问题:
给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。
示例 1:
输入:board = [["X","X","X","X"],["X","O","O","X"],["X","X","O","X"],["X","O","X","X"]]
输出:[["X","X","X","X"],["X","X","X","X"],["X","X","X","X"],["X","O","X","X"]]
解释:被围绕的区间不会存在于边界上,换句话说,任何边界上的 'O' 都不会被填充为 'X'
。 任何不在边界上,或不与边界上的 'O'
相连的 'O' 最终都会被填充为 'X'。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
示例 2:
输入:board = [["X"]]
输出:[["X"]]
提示:
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j] 为 'X' 或 'O'
解答思路:
以下是使用 Java 语言解决此问题的步骤:
1. 分析题目
- 我们需要找到所有被 'X' 围绕的区域,并将这些区域中的 'O' 替换为 'X'。
- 被围绕的区域是指不在边界上,且与边界上的 'O' 不相连的 'O' 所组成的区域。
- 我们可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历矩阵,找到被围绕的区域。
2. 选择合适的解法
- 由于我们需要遍历整个矩阵,并且需要标记已经访问过的元素,因此深度优先搜索是一个合适的选择。
3. 代码实现
- 以下是使用深度优先搜索解决此问题的 Java 代码:
class Solution {
public void solve(char[][] board) {
if (board == null || board.length == 0 || board[0].length == 0) {
return;
}
int rows = board.length;
int cols = board[0].length;
// 遍历边界上的 'O',并将其标记为特殊字符 '#'
for (int i = 0; i < rows; i++) {
if (board[i][0] == 'O') {
dfs(board, i, 0);
}
if (board[i][cols - 1] == 'O') {
dfs(board, i, cols - 1);
}
}
for (int j = 0; j < cols; j++) {
if (board[0][j] == 'O') {
dfs(board, 0, j);
}
if (board[rows - 1][j] == 'O') {
dfs(board, rows - 1, j);
}
}
// 将所有未被标记的 'O' 替换为 'X'
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (board[i][j] == 'O') {
board[i][j] = 'X';
}
}
}
// 将所有标记为 '#' 的元素恢复为 'O'
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (board[i][j] == '#') {
board[i][j] = 'O';
}
}
}
}
private void dfs(char[][] board, int i, int j) {
if (i < 0 || i >= board.length || j < 0 || j >= board[0].length || board[i][j]!= 'O') {
return;
}
board[i][j] = '#';
dfs(board, i - 1, j);
dfs(board, i + 1, j);
dfs(board, i, j - 1);
dfs(board, i, j + 1);
}
}
4. 解释代码
- 'solve' 方法是主要的函数,它接受一个二维字符矩阵 'board' 作为输入。
- 首先,它检查矩阵是否为空,如果为空则直接返回。
- 然后,它使用两个嵌套的循环遍历矩阵的边界。对于每个边界上的 'O',它调用 'dfs' 方法进行深度优先搜索,并将其标记为特殊字符 '#'。
- 接下来,它再次遍历矩阵,将所有未被标记的 'O' 替换为 'X'。
- 最后,它再次遍历矩阵,将所有标记为 '#' 的元素恢复为 'O'。
- 'dfs' 方法是深度优先搜索的实现。它接受矩阵 'board'、当前行索引 'i' 和当前列索引 'j' 作为输入。
- 如果当前位置超出矩阵范围或不是 'O',则直接返回。
- 否则,它将当前位置标记为 '#',并递归地调用 'dfs' 方法对其相邻的位置进行搜索。
5. 测试代码
- 你可以使用以下代码测试上述解决方案:
public class Main {
public static void main(String[] args) {
char[][] board = {
{'X', 'X', 'X', 'X'},
{'X', 'O', 'O', 'X'},
{'X', 'X', 'O', 'X'},
{'X', 'O', 'X', 'X'}
};
Solution solution = new Solution();
solution.solve(board);
for (char[] row : board) {
for (char c : row) {
System.out.print(c + " ");
}
System.out.println();
}
}
}
6. 最终答案
- 运行上述代码,将输出:
X X X X
X X X X
X X X X
X O X X
(文章为作者在学习java过程中的一些个人体会总结和借鉴,如有不当、错误的地方,请各位大佬批评指正,定当努力改正,如有侵权请联系作者删帖。)