数据结构----判断图是否有环的方法

目录

一.广度优先搜索遍历和深度优先搜索遍历

1.无向图

2.有向图

二.拓扑排序


一.广度优先搜索遍历和深度优先搜索遍历

在讲之前,要先直到"回路"和"回边"是两个不同的概念:

回路(环):回路是指图中一系列顶点和边,它们形成一个闭合的路径,即路径的起点和终点是同一个顶点,并且路径中的边和顶点不重复(除了起点和终点)。

特点:回路是一个闭合的路径,表示图中的一部分顶点可以通过边相互访问,形成一个环。

回边:回边是在深度优先搜索(DFS)遍历有向图或无向图时遇到的一种边。它是从一个顶点指向其DFS树(如果图不是连通的,可以说是森林)中祖先的边。这里的“祖先”指的是在DFS过程中,先于当前顶点被访问的顶点。

特点:回边表示图中存在从某个顶点到其祖先的路径,但这并不意味着整个图是连通的或者形成了一个回路。

例如下图,不仅D-->A是回边,F-->A也是一条回边,如果A是F在DFS遍历中遇到的一个顶点,并且A在F之前被访问,那么A就是F在DFS树中的一个祖先,无论A是否位于与F相同的DFS树中,还是位于另一个由不同根节点开始的DFS子树中。

回归正题:

1.无向图

广度优先搜索和深度优先搜索都可能搜到已经访问的结点。

对于广度优先搜索遍历假如一个无向图有环,那么在广度优先搜索的过程中,能搜到已经访问过的结点。如果一个无向图没有环(参考无向树),那么它的广度优先搜索过程是不会访问到已访问过的结点的。

② 对于深度优先搜索遍历,如果一个简单无向图有环,那么深搜的栈保存的结点形成的路径会有回边(指向栈中结点的边)。但是没有环的话,就不会出现这种情况。

2.有向图

只有深度优先搜索可以判断是否有环。

对于广度优先搜索遍历,无论有没有环,广度优先搜索遍历都有可能搜索到已访问过的结点:

例如下图是一个不存在回路的有向图,从顶点1开始执行广度优先遍历,若不设置访问标志位,则会重复访问顶点3。

对于深度优先搜索遍历回边可能是指向深度优先森林中另一棵生成树上的顶点的弧。例如下图,F-->A是一条回边,F指向的是另一棵生成树上的顶点。

但是,从有向图的某个顶点v出发进行深度优先遍历时,若在 DFS(v)结束之前出现一条从顶点u到顶点v的回边,且u在生成树上是v的子孙,则有向图必定存在包含顶点v和顶点u的环。

例如上图,D-->A为一条回边,且D在生成树上是A的子孙,说明这个有向图存在环

补充:这也是树和图的一大区别,树的遍历中不可能出现环,而图的遍历可能出现环。其余的区别顺带说下:

1.对于树而言,遍历的关键是找到该结点的孩子,对于图而言,则是找到与该结点相邻的结点。

2.在实现树的广度优先遍历(层序遍历)时,需要辅助队列:

① 若树非空,根结点入队。

② 若队列非空,队头元素出队并访问,同时将该元素的所有孩子入队。

③ 重复②直至队列为空。

图的广度优先遍历也用到了辅助队列:

① 找到初始顶点,并标记为被访问过。接着,让初始顶点出队,并让其相邻结点都入队。

② 若队列不空,则让队头结点出队,并让其相邻结点都入队,若被标记过以访问,那么直接跳过,将下一个未标记的结点入队。

③ 重复②直至队列为空。

3.树的深度优先搜索遍历,用到栈:从根结点出发,尽可能深地遍历树的分支,直到达到叶子结点,然后回溯到上一个结点,并继续遍历其他为访问的分支。

在图中,也用到栈:过程和树的深度遍历相同,只是中间要注意标记被访问过的结点,当遍历到标记为被访问的结点时跳过即可。

总结:由于图中可能出现环,所以要比树额外增加访问标记数组,记录某个结点是否已被访问过。

二.拓扑排序

拓扑排序用于有向无环图(DAG图)中,可以用DAG图表示一个工程,形成AOV网。忘记了可以看看:

http://t.csdnimg.cn/wk1gP

拓扑排序的过程:

① 从有向无环图中选择一个没有前驱(入度为0)的顶点并输出。

② 从网中删除该顶点和所有以它为起点的有向边。

③ 重复①和②)直到当前的AOV网为空当前网中不存在无前驱的顶点为止

若一个图中有回路(环),那么这个图就不能拓扑排序,例如下图,执行到第4步(红色线)时发现,当前所有顶点的入度都大于0,拓扑排序无法继续进行。

所以拓扑排序也可判断是否有环。

  • 32
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值