谓词公式的判定

对于一个公式,怎么判断它是矛盾式(永假式),可满足式还是有效式(永真式)

(1)根据判断原式是永真式还是永假式:

P(x)->Q(x),\forallxP(x)->\existsyQ(y)的原式是p->q,反过来,P(x)->Q(x),\forallxP(x)->\existsyQ(y)是p->q的代换实例。

注:\forallx(P(x)->Q(x))不是p->q的代换实例。

永真式的代换实例仍然是永真式,永假式的代换实例仍然是永假式。所以可以通过原式的真假判断代换实例的真假。

但是原式是可满足式不能推出代换实例是可满足式。如果原式是可满足式,那么可以通过举例判断代换实例的类型:

(2)举例判断:

(3)\exists为真,\forall可真可假

(5)上面举例有

(9)设论域为U,若前件(\forallx)(P(x)∧ Q(x))为真,则任意一个元素x,(P(x))和(Q(x))都同时为真。那么对于任意x ∈ U,P(x)为真,这就使得(\forallx)P(x)为真;同理,对于任意y ∈U,Q(y)也为真,即(\forally)Q(y)为真。所以,蕴含前,后为真,公式为真;蕴含前为假,不论后面是什么,公式为真。

(10)设P(x)为偶数,Q(x)为奇数,谓词公式为真;设P(x)为“x<2”,Q(x)为“x>2”,则谓词公式为假。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值