对于一个公式,怎么判断它是矛盾式(永假式),可满足式还是有效式(永真式)
(1)根据判断原式是永真式还是永假式:
P(x)->Q(x),
xP(x)->
yQ(y)的原式是p->q,反过来,P(x)->Q(x),
xP(x)->
yQ(y)是p->q的代换实例。
注:
x(P(x)->Q(x))不是p->q的代换实例。
永真式的代换实例仍然是永真式,永假式的代换实例仍然是永假式。所以可以通过原式的真假判断代换实例的真假。
但是原式是可满足式不能推出代换实例是可满足式。如果原式是可满足式,那么可以通过举例判断代换实例的类型:
(2)举例判断:
(3)
为真,
可真可假
(5)上面举例有
(9)设论域为U,若前件(
x)(P(x)∧ Q(x))为真,则任意一个元素x,(P(x))和(Q(x))都同时为真。那么对于任意x ∈ U,P(x)为真,这就使得(
x)P(x)为真;同理,对于任意y ∈U,Q(y)也为真,即(
y)Q(y)为真。所以,蕴含前,后为真,公式为真;蕴含前为假,不论后面是什么,公式为真。
(10)设P(x)为偶数,Q(x)为奇数,谓词公式为真;设P(x)为“x<2”,Q(x)为“x>2”,则谓词公式为假。