常见塑性材料对比

PA(尼龙)、PC(聚碳酸酯)、ABS、PLA(聚乳酸)、POM(聚甲醛)、PE(聚乙烯)

从力学性能、耐热性、耐化学性、打印难度、成本/应用场景对比

一句话总结:

  • PLA → 商业打印机常用,便宜不耐热易熔。

  • ABS → 低成本工程塑料,抗冲击比 PLA 强,便宜

  • PA → 耐磨耐冲击,机械零件常用,但不耐潮表面易粗糙

  • PC高强度耐热,适合高负载结构件,因而需要高温喷头,且成本高

  • POM → 耐磨有 自润滑特性 适合经常摩擦的场合,常替代金属齿轮滑块,比PA贵比PC便宜。

  • PE → 柔韧耐化学,强度不高,打印难度大,耐腐蚀,常用管材、水管等。

PEEK又称“聚醚醚酮”,是一种半结晶型聚合物,具有轻量化、高强度、耐高温、耐磨等特性,材料密度仅为铝合金的58%,但拉伸强度可达200MPa(碳纤维增强后),在性能、商业价值上都处于工程塑料的“皇冠”位置。

<think>好的,我现在需要回答用户关于Abaqus中塑性材料是否支持显式动力学计算的问题。首先,我需要回顾一下Abaqus的显式和隐式动力学分析的区别,以及材料模型在两种分析中的支持情况。 根据引用[1],Abaqus在定义弹塑性材料时,需要输入屈服应力和硬化法则,比如使用Von Mises准则和Swift硬化模型。这说明塑性材料模型在Abaqus中是存在的。而引用[2]提到隐式动力学使用Hilber-Hughes-Taylor算法等,主要用于瞬态或准静态响应。但用户的问题是关于显式动力学的支持情况。 显式动力学通常用于高速冲击、爆炸等瞬态问题,使用显式时间积分方法,如中心差分法。显式方法对材料模型的复杂性和稳定性要求较高。我需要确认在显式分析中是否允许使用塑性材料属性。根据Abaqus文档,显式动力学模块(Abaqus/Explicit)支持多种材料模型,包括弹塑性材料。例如,Von Mises塑性模型在显式分析中是可用的,但可能需要不同的参数设置或硬化模型。 另外,用户提供的材料定义代码中使用了Von Mises和Swift硬化,这些在显式分析中是否适用?需要检查Abaqus的关键字是否在Explicit分析中有效。例如,*Material和*Plastic关键字是通用的,但硬化模型如Swift可能需要确认是否在Explicit中被支持。通常,显式分析支持类似的材料模型,但可能需要不同的数值处理方法。 总结:Abaqus的显式动力学支持塑性材料,但需注意材料参数和硬化法则的适用性,可能需要参考具体模块的文档。此外,显式和隐式在材料模型实现上可能有细微差别,比如应变率效应在显式中更为常见。</think>Abaqus显式动力学(Abaqus/Explicit)完全支持塑性材料的计算,包括常见的弹塑性模型(如Von Mises塑性)及硬化法则(如等向硬化、运动硬化等)。以下是具体说明: --- ### 1. **显式动力学与塑性材料的兼容性** Abaqus/Explicit通过显式时间积分算法(如中心差分法)处理瞬态动力学问题,适用于高速冲击、碰撞等场景。其材料库中包含完整的塑性材料模型: - **Von Mises屈服准则**:支持各向同性硬化、运动硬化等,如代码中的`*Plastic`定义[^1]。 - **应变率相关模型**:显式分析常需考虑应变率效应(如Johnson-Cook模型),这与隐式动力学中的准静态分析形成对比[^2]。 - **材料参数适配性**:用户提供的材料定义(如Swift硬化)可直接用于显式分析,但需注意显式模块对材料稳定性的要求更高。 --- ### 2. **显式分析中塑性材料的定义示例** 以下代码展示了显式动力学中弹塑性材料的典型定义: ```fortran *Material, Name=Steel-Explicit *Density 7850. *Elastic 210000., 0.3 *Plastic, Hardening=ISOTROPIC 100.0, 0.0 ! 初始屈服应力 200.0, 0.1 ! Swift硬化参数(需根据显式分析调整) *Rate Dependent, Type=JOHNSON COOK ! 可选应变率模型 ``` - **关键点**:显式分析需注意时间步长稳定性,塑性变形可能影响临界时间步长。 --- ### 3. **显式与隐式动力学的对比** | 特性 | 显式动力学 (Abaqus/Explicit) | 隐式动力学 (Abaqus/Standard) | |---------------------|-------------------------------------|--------------------------------| | **时间积分** | 中心差分法(条件稳定) | Hilber-Hughes-Taylor(无条件稳定) | | **适用场景** | 高速瞬态问题(如冲击) | 准静态/低频振动 | | **材料模型** | 支持塑性、应变率模型 | 支持塑性,但较少考虑应变率效应 | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值