今年公司ultralytics发布了最新的YOLOv8目标检测模型,同时提供了基于该模型的跟踪实现,该实现通过调用2022年最新提出的跟踪算法BoT-SORT或ByteTrack实现目标跟踪。
多目标追踪算法核心思想是将目标检测和目标跟踪分离开来,首先使用目标检测算法对视频帧中的目标进行检测,然后将检测到的目标转化为特征向量,使用深度学习模型对目标特征进行学习, 最后使用==卡尔曼滤波器==对目标进行跟踪,实现对目标的连续跟踪。 DeepSort的优点是实时性高、准确率高、鲁棒性强,可以应用于多种场景,如人脸识别、车辆跟 踪等。同时,DeepSort还具有可扩展性强的优点,可以根据不同的应用场景进行定制化的优化。本文基于YOLOv8+DeepSORT实现目标检测及跟踪。
首先去GitHub官网将项目下载或者拉下来
网址:MuhammadMoinFaisal/YOLOv8-DeepSORT-Object-Tracking: YOLOv8 Object Tracking using PyTorch, OpenCV and DeepSORT (github.com)然后按照readme文档将环境配置好
pip install -e '.[dev]'
进入到detect中
cd ultr