YOLOv8添加DeepSORT目标追踪算法

今年公司ultralytics发布了最新的YOLOv8目标检测模型,同时提供了基于该模型的跟踪实现,该实现通过调用2022年最新提出的跟踪算法BoT-SORT或ByteTrack实现目标跟踪。

多目标追踪算法核心思想是将目标检测和目标跟踪分离开来,首先使用目标检测算法对视频帧中的目标进行检测,然后将检测到的目标转化为特征向量,使用深度学习模型对目标特征进行学习, 最后使用==卡尔曼滤波器==对目标进行跟踪,实现对目标的连续跟踪。 DeepSort的优点是实时性高、准确率高、鲁棒性强,可以应用于多种场景,如人脸识别、车辆跟 踪等。同时,DeepSort还具有可扩展性强的优点,可以根据不同的应用场景进行定制化的优化。本文基于YOLOv8+DeepSORT实现目标检测及跟踪。

首先去GitHub官网将项目下载或者拉下来

网址:MuhammadMoinFaisal/YOLOv8-DeepSORT-Object-Tracking: YOLOv8 Object Tracking using PyTorch, OpenCV and DeepSORT (github.com)然后按照readme文档将环境配置好

pip install -e '.[dev]'

进入到detect中

cd ultr
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值