结合语言知识和深度学习的中文文本情感分析方法

本文提出CLKDL方法,结合语义规则和情感词典,通过深度学习模型提高中文文本情感分析性能。首先利用语义规则抽取关键情感片段和情感集合,再用BERT等深度学习技术提取特征,最后融合特征进行情感极性判断。实验显示CLKDL在情感极性分类上优于传统方法。
摘要由CSDN通过智能技术生成

 摘要在目前的中文文本情感分析研究中,基于语义规则和情感词典的方法通常需要人工设置情感阈值;而基于深度学习的方法由于未能运用语义规则和情感词典等语言知识,不能充分提取情感特征。针对这两种方法的缺点,提出了一种将语言知识和深度学习结合的文本情感分析方法。该方法首先根据语义规则提取文本中的关键情感片段,再根据情感词典从关键情感片段中抽取出情感更加明确的情感词来构建情感集合,然后利用深度学习模型分别从原始文本、关键情感片段、情感集合中抽取深层次特征,最后对提取的特征进行加权融合,并利用分类器实现情感极性的判断。实验结果表明,与未引入语言知识的深度学习模型相比,该方法的情感极性分类能力有明显提升。

关键词文本情感分析 ; 语言知识 ; 深度学习

0 引言

情感分析(sentiment analysis)是指通过分析、归纳、推理等过程自动地对具有感情色彩的文本进行情感极性的判断。随着Web2.0的到来,越来越多的人成为互联网的参与者,并通过博客、在线门户网站、电商平台等产生大量具有感情色彩的文本。对这些文本进行分析挖掘对于舆

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值