基于法律裁判文书的法律判决大数据预测

本文探讨了法律判决预测任务,基于裁判文书网数据构建预测模型,包括法条、罪名和刑期预测。通过判决要素抽取、模型融合与分层学习、法条与语义差异性等方法提升预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  摘要针对智慧司法服务领域中“法律判决预测”任务的实际需求,探讨了法律判决预测任务的研究思路与实现路径,介绍了法律判决预测的整体框架和具体过程。基于从中国裁判文书网获取的海量真实案件数据和2018“中国法研杯”司法人工智能挑战赛的评测数据,整理了实验数据类别,规范了实验数据格式,形成了基于法律裁判文书大数据的法律判决预测数据集。在判决预测模型中,首先使用判决要素抽取方法提取出高质量的判决要素句,然后借鉴法官的判案思路,将整个法律判决预测任务转换为法条预测、罪名预测和刑期预测3项子任务,并分别构建了基于判决要素的预测模型。实验结果表明,所提方法在刑法类判决预测数据集上得到了有效的结果。

关键词法律判决预测 ; 判决要素抽取 ; 法条预测 ; 罪名预测 ; 刑期预测

1 引言

在人工智能与大数据技术的推动下,从2013年起,我国各级司法机构就进入了以提供智能司法服务为目的的“智慧司法”建设时期。在2014年与2016年,最高人民法院相继推出了人民法院数据集中管理平台与国家司法审判系统,并开通了中国裁判文书网与中国法律应用数字网络服务平台。2017年7月,国家人工智能战略《新一代人工智能发展规划》对人工智能理论、技术和应用做出前瞻布局,呼吁加强人工智能相关法律、伦理和社会问题研究。同时,该规划力挺智慧法庭

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值