作者:老余捞鱼
原创不易,转载请标明出处及原作者。
写在前面的话:我想向大家分享一个在股票分析领域中并不常被讨论,但却极具效力的工具——RS线。相较于大家耳熟能详的RSI指标,RS线能够更为明确地呈现出股票相对于整个市场的走势,协助我们发现市场的领军者并跟踪其趋势。接下来,让我们一同深入探索RS线的独特之处,以及如何运用它来捕捉市场中的领头羊吧!
一、了解 RS 及其优势
RS(Relative Strength Line / 相对强度线)是一种用于分析股票或其他金融资产表现的技术指标。它通过比较某一资产的价格表现与市场或基准指数的表现,帮助投资者识别出相对强势或弱势的资产。RS的计算通常涉及将特定时间段内的资产价格变化与相应时间段内的市场价格变化进行比较,从而得出一个相对强度值。
为了要大家更好理解这强大的工具,我举例说明:
RS 用于比较特定股票(我用特斯拉(TSLA)举例)与基准指数(通常是标准普尔 500 指数等更广泛的市场指数)之间的表现。
RS 的计算方法是用股票的收盘价除以基准指数的收盘价,得出一个可以随时间变化绘制的比率。
在上图中,当 RS 线位于移动平均线上方时,我将其填充为绿色;当其位于移动平均线下方时,我将其填充为橘红色,以便更好地显示 RS 线的走势。
RS 线的主要优势之一是它能清晰地反映出股票的相对表现。上图通过将股票与大盘(标普 500 指数)进行比较,RS 线可以帮助投资者判断股票的表现是好是坏。例如,如果特斯拉的 RS 线呈上升趋势,则表明特斯拉的表现优于整体市场,这可能是在各种市场条件下表现强劲和具有弹性的信号。
此外,RS 线也是确定市场领导地位的重要工具。
RS 线上升的股票通常被认为是市场领头羊,因为它们在牛市和熊市中都表现优异。该指标可帮助交易者关注那些表现出持续相对优势的股票,这对于建立一个由表现强劲的股票组成的投资组合尤为有用。
RS 线还可以帮助投资者追踪长期趋势的一致性。通过将移动平均线与 RS 线绘制在一起(在上图中,我使用了 RS 线的 10 天 MA),交易者可以确定某只股票在哪些时期持续表现优异或表现不佳。
上面所有功能实现的源代码在本文结尾处,需要的童靴请自取。
二、与 RSI 的区别
相对强弱指数(RSI)是一种动量震荡指标,用于测量特定时期(通常为 14 天)内价格变动的速度和变化。RSI 的范围在 0 到 100 之间,读数高于 70 通常表示超买状态,读数低于 30 则表示超卖状态。我曾将其比作“股市血压计”。
虽然 RSI 对于识别短期反转和发现潜在的买入或卖出机会很有用,但与 RS 线相比,它有一些明显的局限性。
RSI 的一个重要局限是:它只衡量内部价格动量,而不考虑股票相对于大盘的表现。RSI 可以显示一只股票是超买还是超卖,但它并不能告诉我们,与同类股票相比,这只股票实际上是领先还是落后。这种缺乏背景的情况会让我们更难评估股票在市场中的整体实力。
RSI 的另一个局限性是:它在趋势强劲的市场中容易产生错误信号。在强劲的上升趋势中,RSI 可能会在超买区间停留较长时间,从而使其在选择交易时机时不那么有效。同样,在下跌趋势中,RSI 可能会停留在超卖区间,导致交易者对自己的策略产生怀疑。相比之下,RS 线可以帮助投资者关注那些持续跑赢市场的股票,即使在高波动期也是如此。
所以说,如果大家喜欢使用 RSI,切记要结合其他指标一起使用,我写过的几篇文章供大家参考:
三、使用场景与注意事项
3.1 在什么场景下优先使用 RS 指标
选择RS线而非RSI,往往基于投资者所追求的分析类型和观察角度。RS线特别适合于那些希望辨识市场领导者以及评估股票长期相对表现的投资者。它能够辅助交易者判断某只股票的表现是否持续超越其基准,这一点在波动频繁的市场环境中,对于制定明智的投资决策具有至关重要的意义。
而对于 RSI 而言,它更适合短线交易者或那些对根据价格动量确定具体进出场时机感兴趣的人。不过,它对短期价格走势的敏感性可能会使其对那些更关注大盘走势和相对优势的长期投资者来说用处不大。
RS 线是一个很好的指标,可以帮助我们筛选股票,尤其是行业内的龙头股,RSI 可以帮助你确定何时是进行交易的最佳时机。
3.2 注意事项
然而,RS线并非万能,它可能在以下情况下失效:
- 市场极端波动:在市场出现极端波动或突发事件时,RS线可能无法准确反映市场的真实情况,导致信号失真。
- 股票停牌或新股上市:在股票停牌或新股上市等特殊情况下,RS线可能无法正常发挥作用,因为这些情况下股票的价格变动可能无法正常反映其市场表现。
- RS线与股价背离:当股价与RS线出现背离时,即股价创新高而RS线未能同步创新高,可能预示着市场即将反转下跌。
投资者在使用RS线进行技术分析时,应结合其他指标和市场信息,谨慎判断,以避免误判市场趋势。
四、观点总结
总的来说,RS线为投资者开辟了一个更为宽广的视野,帮助他们更全面地掌握股票在市场中的相对表现。借助RS线,投资者能够聚焦于那些真正具备领导潜力和弹性的个股,进而在构建投资组合时做出更具前瞻性和策略性的抉择。相较于RSI,RS线提供的比较视角使其成为追求长期市场超额收益及一致性的投资者的首选分析工具。
- RS 线优于 RSI:RS 线能够直观地展示股票相对于大盘的表现,有助于识别市场领导者和评估股票的相对优势。
- RS 线的应用:RS 线可以用来追踪趋势的一致性,帮助投资者在动态市场中做出更具战略性的决策。
- RSI 的局限性:RSI 可能在强势市场中产生误导性的信号,且不提供股票相对于市场的表现信息,这限制了其在长期投资决策中的应用。
- 投资策略:投资者应该结合基本面分析和业务状况,而不仅仅依赖技术指标,以成为一个聪明的投资者。
源代码如下:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 2024.12
@author: https://www.laoyulaoyu.com/
"""
import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import matplotlib.dates as mdates
ma_list = [10, 20, 50, 100]
ticker = 'TSLA'
# Fetch stock and S&P 500 (^GSPC) data
def fetch_data():
start_date = '2023-01-01'
end_date = '2024-12-31'
# stock stock data
stock = yf.download(ticker, start=start_date, end=end_date)
# S&P 500 index data
sp500 = yf.download('^GSPC', start=start_date, end=end_date)
return stock, sp500
def calculate_rs_line(stock, sp500):
# Calculate the RS Line by dividing stock closing price by S&P 500 closing price
rs_line = stock['Close'] / sp500['Close']
return rs_line
def calculate_rsi(data, rsi_window, ma_window):
delta = data['Close'].diff(1)
gain = delta.where(delta > 0, 0)
loss = -delta.where(delta < 0, 0)
avg_gain = gain.rolling(window=rsi_window).mean()
avg_loss = loss.rolling(window=rsi_window).mean()
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
# Calculate 10-day moving average of RSI
rsi_ma_10 = rsi.rolling(window=ma_window).mean()
data['RSI_14'] = rsi
data['RSI_10_MA'] = rsi_ma_10
return data
def plot_data(stock, rs_line, rsi):
fig = plt.figure(figsize=(12, 10), dpi=300)
gs = GridSpec(4, 1, height_ratios=[4, 1, 3,2])
# Plot stock stock price with line chart and moving averages
ax_stock = fig.add_subplot(gs[0])
ax_stock.plot(stock.index, stock['Close'], label='Close Price', color='black')
for ma in ma_list:
stock_ma = stock['Close'].rolling(window=ma).mean()
ax_stock.plot(stock.index, stock_ma, label=f'{ma}-Day MA', alpha=0.5, linestyle='-')
ax_stock.set_title(f'{ticker} Stock Price with Moving Averages')
ax_stock.set_ylabel('Stock Price (USD)')
ax_stock.legend(loc='upper left')
ax_stock.grid()
ax_stock.tick_params(axis='x', which='both', bottom=False, labelbottom=False)
# Plot volume in grayscale
ax_volume = fig.add_subplot(gs[1], sharex=ax_stock)
ax_volume.bar(stock.index, stock['Volume'], color='gray', alpha=0.5)
ax_volume.set_ylabel('Volume')
ax_volume.grid()
ax_volume.tick_params(axis='x', which='both', bottom=False, labelbottom=False)
# Plot RS Line
ax_rs = fig.add_subplot(gs[2], sharex=ax_stock)
rs_line_ma10 = rs_line.rolling(window=10).mean()
ax_rs.plot(stock.index, rs_line, label=f'RS Line ({ticker} vs S&P 500)', color='orange')
ax_rs.plot(stock.index, rs_line_ma10, label='10-Day MA', alpha=0.8, color='gray', linestyle='-')
ax_rs.fill_between(stock.index, rs_line, rs_line_ma10, where=(rs_line < rs_line_ma10), color='red', alpha=0.5, label='Below MA 10')
ax_rs.fill_between(stock.index, rs_line, rs_line_ma10, where=(rs_line > rs_line_ma10), color='green', alpha=0.5, label='Above MA 10')
ax_rs.set_title(f'Relative Strength Line ({ticker} vs S&P 500)')
ax_rs.set_xlabel('Date')
ax_rs.set_ylabel('RS Value')
ax_rs.legend(loc='upper left')
ax_rs.grid()
# Plot RSI
ax_rsi = fig.add_subplot(gs[3], sharex=ax_stock)
ax_rsi.plot(stock.index, stock['RSI_14'], label='RSI (14-day)', color='darkblue')
ax_rsi.plot(stock.index, stock['RSI_10_MA'], label='10-Day MA of RSI', color='red', alpha=0.5, linestyle='-')
ax_rsi.axhline(y=30, color='red', linestyle='-', linewidth=1, label='Oversold (30)')
ax_rsi.axhline(y=70, color='green', linestyle='-', linewidth=1, label='Overbought (70)')
ax_rsi.set_title('Relative Strength Index (RSI)')
ax_rsi.set_xlabel('Date')
ax_rsi.set_ylabel('RSI Value')
ax_rsi.legend(loc='upper left')
ax_rsi.grid()
plt.tight_layout()
plt.show()
# Main
def main():
stock, sp500 = fetch_data()
rs_line = calculate_rs_line(stock, sp500)
rsi = calculate_rsi(stock, 14,10)
plot_data(stock, rs_line, rsi)
if __name__ == "__main__":
main()
感谢您阅读到最后,希望本文能给您带来新的收获。码字不易,请点赞、分享。祝您投资顺利!如果对文中的内容有任何疑问,请给我留言,必复。
本文内容仅限技术探讨和学习,不构成任何投资建议。