1. T检验:用于比较两个样本均值是否有显著差异,适用于两个样本均值的比较。
2. 方差分析(ANOVA):用于比较三个或三个以上样本均值是否有显著差异,适用于多个样本均值的比较。
3. 卡方检验:用于比较两个或两个以上分类变量的分布是否有显著差异,适用于分类变量的比较。
4. 相关分析:用于研究两个变量之间的关系,可以通过计算相关系数来判断两个变量之间的相关性。
5. 回归分析:用于研究自变量与因变量之间的关系,通过拟合回归方程来预测因变量的值。
6. 主成分分析:用于降维和提取数据的主要特征。通过线性变换将原始变量转化为一组主成分,从而减小变量的维数。
7. 判别分析:用于将样本分类到已知组别中,通过分析自变量对因变量的判别作用,建立判别函数进行分类。
8. 聚类分析:用于将样本按照其相似性进行分类,通过测量样本之间的距离或相似性来确定分类。
9. 非参数检验:用于比较样本分布的差异,不依赖于总体分布的假设。例如,Wilcoxon秩和检验、Kruskal-Wallis检验等。
差异性分析常用方法
最新推荐文章于 2024-08-03 14:19:34 发布