引言
随着城市交通的日益拥堵,实时和准确的交通流量监控成为智能交通系统中的一个重要组成部分。传统的交通监控方法如感应线圈和人工统计不仅成本高,而且效率低下。本文将介绍一种利用计算机视觉技术实现的车辆检测与跟踪系统,该系统能够通过视频自动计算车道内的交通流量。
部分代码展示如下:
def draw_lines_and_counts(im0):
global line_counts, lines, decoration_lines
# 画计数线
for (start, end) in lines:
cv2.line(im0, start, end, color=(0, 255, 0), thickness=2)
# 显示计数
for i, count in enumerate(line_counts):
cv2.putText(im0, f'Lane {i+1}: {count}', (lines[i][0][0], lines[i][0][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
# 画车道线
for (start, end) in decoration_lines:
cv2.line(im0, start, end, color=(255, 0, 0), thickness=2)
技术概述
本系统主要采用了YOLOv5和DeepSort模型。YOLOv5是一个高效的目标检测模型,能够在视频中实时识别车辆;DeepSort则用于对检测到的车辆进行跟踪,确保交通流量的统计准确性。通过这两种模型的结合,我们可以精确地监控和分析各车道的交通流量。