[OpenCV] (车辆检测和分车道计数)利用计算机视觉技术通过视频监测车道交通流量

引言

随着城市交通的日益拥堵,实时和准确的交通流量监控成为智能交通系统中的一个重要组成部分。传统的交通监控方法如感应线圈和人工统计不仅成本高,而且效率低下。本文将介绍一种利用计算机视觉技术实现的车辆检测与跟踪系统,该系统能够通过视频自动计算车道内的交通流量。

部分代码展示如下:

def draw_lines_and_counts(im0):
    global line_counts, lines, decoration_lines
    # 画计数线
    for (start, end) in lines:
        cv2.line(im0, start, end, color=(0, 255, 0), thickness=2)
    
    # 显示计数
    for i, count in enumerate(line_counts):
        cv2.putText(im0, f'Lane {i+1}: {count}', (lines[i][0][0], lines[i][0][1] - 10), 
                    cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    
    # 画车道线
    for (start, end) in decoration_lines:
        cv2.line(im0, start, end, color=(255, 0, 0), thickness=2)

技术概述

本系统主要采用了YOLOv5和DeepSort模型。YOLOv5是一个高效的目标检测模型,能够在视频中实时识别车辆;DeepSort则用于对检测到的车辆进行跟踪,确保交通流量的统计准确性。通过这两种模型的结合,我们可以精确地监控和分析各车道的交通流量。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值