TT100K数据集

http://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/data.zip

### TT100K 数据集概述 TT100K 是一个广泛用于交通标志识别的目标检测数据集,由清华大学和腾讯联合发布。该数据集包含了大量中国道路上常见的交通标志图像及其标注信息[^1]。 #### 下载与使用说明 为了获取并使用此数据集: - 可通过官方提供的链接下载 `Tsinghua-Tencent 100K Annotations 2021` 的 `.zip` 压缩包文件,并将其解压到本地目录中。 - 官方提供了详细的教程文档来指导如何处理这些数据,建议按照指南中的指示操作以确保正确解析和利用数据集资源。 #### 数据特征描述 TT100K 数据集中共有 **7,962** 张图片覆盖了 **45** 种不同类型的交通标志分类。每一张图片都经过精确的人工标注,在原始版本基础上增加了更多的细粒度标签以便于更深入的研究工作[^2]。 对于目标检测任务而言,每个交通标志都被标记在一个矩形框内,这有助于算法学习特定类别的外观模式以及位置分布特性。 值得注意的是,尽管数据质量得到了严格把控,但对于基于此数据集训练出来的模型性能不作出具体承诺;使用者应自行评估所开发系统的有效性及可靠性。 ```python import os from PIL import Image import xml.etree.ElementTree as ET def parse_voc_xml(xml_file_path): tree = ET.parse(xml_file_path) root = tree.getroot() objects = [] for obj in root.findall('object'): name = obj.find('name').text bndbox = obj.find('bndbox') xmin = int(bndbox.find('xmin').text) ymin = int(bndbox.find('ymin').text) xmax = int(bndbox.find('xmax').text) ymax = int(bndbox.find('ymax').text) objects.append({ 'class': name, 'bbox': [xmin, ymin, xmax, ymax] }) return { 'filename': root.find('filename').text, 'objects': objects } # Example usage with VOC format XML file from the dataset example_annotation = './path/to/tt100k/Annotations/some_image.xml' parsed_data = parse_voc_xml(example_annotation) print(parsed_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值