RuntimeError:The model and loaded state dict do not match exactly.解决记录

        最近在做深度模型训练,测试模型的时候出现了RuntimeError:The model and loaded state dict do not match exactly.的报错,当时网上查找了一下原因,没怎么找到解决方案,突然想到,可能会不会是默认设置的原因。因为有好几个模型,所以我是先将所有的模型都先训练一遍,然后再回头进行测试。在训练完最后一个模型的时候我回到第一个模型进行测试,就出现了以下报错。

然后我就尝试修改了一下__init__.py里导入的模型和模型文件名,与准备测试的模型一致。

同时修改了utils-->configs.py里的默认设置。

再次进行测试,没有出现问题。

当你尝试通过本地后端加载模型时,遇到了与源状态字典不匹配的错误,特别是关于"data_preprocessor.mean"和"data_preprocessor.std"这两个键。这意味着你试图加载的检查点(`rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth`)可能是在旧版本的MMDetection框架下创建的,而你现在使用的环境可能已经有了不同的结构,比如移除了预处理器相关的mean和std属性。 为了解决这个问题,你需要确保你正在加载的模型和当前代码库的架构兼容。以下是一些可能的解决方案: 1. **升级MMDetection**: 检查是否有新版本的MMDetection可以匹配你加载的模型。如果有的话,更新到相应版本并重新训练或导出检查点。 2. **调整加载代码**: 如果不能升级框架,你可能需要手动从源状态字典中移除这些键,或者修改加载代码以忽略它们。例如,你可以使用`strict=False`参数来尝试载入,虽然这不是最佳实践,但可以在临时解决问题: ```python checkpoint = torch.load('path_to_checkpoint', map_location='cpu', strict=False) ``` 3. **直接加载核心模型**: 可能只关心特定部分的模型,如backbone或其他模块,而不包括预处理层。在这种情况下,你可以只加载那些不会冲突的部分。 请注意,始终要确保模型结构的兼容性,避免在运行时出现问题。如果不确定如何操作,最好查阅官方文档或联系社区支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值