日前,优必选对外宣布与百度达成合作,将其人形机器人Walker S接入百度文心大模型,共探“AI大模型+人形机器人”创新应用,这也是国内首款接入大模型的人形机器人。在此之前Figure公司与OpenAI合作,发布了首个接入了OpenAI大模型的机器人demo——Figure 01,作为Figure和OpenAI合作的首批成果在业内引起不小的轰动,AI大模型+人形机器人正掀起下一波技术热潮。
那么,从技术角度来看,AI大模型和人形机器人在技术层面的结合到底有些可能性呢?
1. 自然语言交互😗
利用Transformer等注意力机制的神经网络架构,训练海量文本数据,构建强大的语言理解与生成模型。采用Seq2Seq、BERT、GPT等模型结构,实现高质量的语音识别(ASR)、自然语言理解(NLU)和自然语言生成(NLG)。在交互中引入Grounding技术,让机器人能根据实物环境信息更准确地理解用户意图。代表案例:Alexa、Siri等智能语音助手已广泛应用自然语言处理技术,能与用户进行流畅对话;Xiaomi CyberOne等人形机器人搭载大语言模型,实现高自然度语音交互。
2. 知识库与推理
通过Knowledge Embedding将结构化知识库如Freebase映射到连续向量空间,再利用Graph Neural Network等技术学习知识图谱表示,增强大模型的知识性和逻辑推理能力。在预训练阶段引入知识蒸馏和对比学习,让模型更好地吸收结构化知识。利用归纳逻辑编程(ILP)、Markov逻辑网等技术进行逻辑推理。代表案例:IBM Watson利用知识库实现强大的问答和逻辑推理能力;DeepMind的AlphaGo以知识驱动的方式掌握围棋知识,并用于对弈推理。
3. 多模态感知与决策
通过Multimodal Transformer、Cross-attention等技术融合视觉、语音、文本等多模态信息。利用主动学习让机器人主动询问未知环境信息,减少感知不确定性。将计算机视觉技术如目标检测、图像分割等与大模型相结合,实现场景理解。在决策中引入因果推理,增强机器人应对复杂环境的鲁棒性。代表案例:Elon Musk的Optimus机器人将深度学习应用于视觉感知,实现精准的目标识别与抓取;Robotic Vision公司将视觉信息融入语言模型,实现更全面的场景理解。
4. 运动规划
采用深度强化学习(DRL)训练运动规划模型,如DDPG、SAC等,让机器人通过trial and error学习最优运动轨迹。将运动规划与Imitation Learning相结合,通过模仿人类动作,实现更自然的运动。利用Sim2Real技术弥合仿真与真实环境的差距。将运动规划与反馈控制结合,实现更稳定、实时的运动控制。代表案例:Boston Dynamics的Atlas机器人采用模仿学习与强化学习相结合,实现了高难度体操动作;Robotic AI公司利用深度强化学习实现机器人精准控制。
5. 任务规划与执行
通过Hierarchical Task Network等技术将复杂任务分解为多层次可执行子任务。利用Monte-Carlo Tree Search (MCTS)等算法在任务规划中进行全局优化搜索。在执行中采用Behavior Tree或有限状态机(FSM)等技术编排子任务,处理不同场景下的状态转移。同时引入错误监控和问题诊断技术,增强任务执行的容错性。代表案例:通用汽车(GM)的Dreamcatcher系统利用MCTS进行智能装配任务规划;NASA的Robonaut 2利用分层控制结构,自主执行空间站维修等任务。
6. 情感交互
利用多模态情感识别模型,融合面部表情、语音语调、身体动作等信息,实现用户情绪的准确理解。在情感生成中,采用GAN等生成式模型合成表情、动作。利用Seq2Seq模型生成情感回复。在对话中融入幽默、同理心等社交策略,让交互更具人性化。代表案例:Hanson Robotics的Sophia机器人通过面部表情合成和声音合成,实现了丰富的情感表达;Emoshape公司的情感芯片赋予机器人表达同理心的能力。
7. 持续学习
采用元学习(Meta-learning)让机器人学会如何学习,实现快速适应新任务、新环境的能力。通过Continual Few-Shot Learning、Incremental Learning等技术在少量新数据上进行增量学习,克服灾难性遗忘问题。引入主动学习,让机器人主动向用户询问未知知识,加速学习进程。代表案例:Cogitai公司利用增量学习技术,让智能体在连续学习中不断进化;Dactyl项目利用元学习,让机器人掌握多种物体操纵技能。
以上技术的融合有望全面提升人形机器人在感知、认知、决策、规划、控制、交互、学习等方面的能力,最终实现更加智能化、人性化的人形机器人。但目前这一领域仍处于探索阶段,在算法、硬件、系统集成等方面仍面临不少挑战,离大规模商业化应用还有一定距离。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉国内企业大模型落地应用案例👈
💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。
👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
👉640份大模型行业报告👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓