P1802 5 倍经验日
题目背景
现在乐斗有活动了!每打一个人可以获得 5 倍经验!absi2011 却无奈的看着那一些比他等级高的好友,想着能否把他们干掉。干掉能拿不少经验的。
题目描述
现在 absi2011 拿出了 xx 个迷你装药物(嗑药打人可耻…),准备开始与那些人打了。
由于迷你装药物每个只能用一次,所以 absi2011 要谨慎的使用这些药。悲剧的是,用药量没达到最少打败该人所需的属性药药量,则打这个人必输。例如他用 22 个药去打别人,别人却表明 33 个药才能打过,那么相当于你输了并且这两个属性药浪费了。
现在有 nn 个好友,给定失败时可获得的经验、胜利时可获得的经验,打败他至少需要的药量。
要求求出最大经验 ss,输出 5s5s。
输入格式
第一行两个数,nn 和 xx。
后面 nn 行每行三个数,分别表示失败时获得的经验 \mathit{lose}_ilosei,胜利时获得的经验 \mathit{win}_iwini 和打过要至少使用的药数量 \mathit{use}_iusei。
输出格式
一个整数,最多获得的经验的五倍。
输入输出样例
输入 #1复制
6 8
21 52 1
21 70 5
21 48 2
14 38 3
14 36 1
14 36 2
输出 #1复制
1060
说明/提示
【Hint】
五倍经验活动的时候,absi2011 总是吃体力药水而不是这种属性药。
【数据范围】
对于 10\%10% 的数据,保证 x=0x=0。
对于 30\%30% 的数据,保证 0\le n\le 100≤n≤10,0\le x\le 200≤x≤20。
对于 60\%60% 的数据,保证 0\le n,x\le 1000≤n,x≤100, 10<lose_i,win_i\le 10010<losei,wini≤100,0\le use_i\le 50≤usei≤5。
对于 100\%100% 的数据,保证 0\le n,x\le 10^30≤n,x≤103,0<lose_i\le win_i\le 10^60<losei≤wini≤106,0\le use_i\le 10^30≤usei≤103。
【题目来源】
absi2011 授权题目
思路:转化为0/1背包进行求解,将输了之后的作为基础值,差值变成价值
0/1背包dp过程详解:
6 8
w a
52 1
70 5
48 2
38 3
36 1
36 2
dp数组状态:0 0 0 0 0 0 0 0
i=1;
dp[8]=max(dp[8],dp[8-1]+a[1]);
dp[7]=max(dp[7],dp[7-1]+a[1]);
dp[6]=max(dp[6],dp[6-1]+a[1]);
dp[5]=max(dp[5],dp[5-1]+a[1]);
dp[4]=max(dp[4],dp[4-1]+a[1]);
dp[3]=max(dp[3],dp[3-1]+a[1]);
dp[2]=max(dp[2],dp[2-1]+a[1]);
dp[1]=max(dp[1],dp[1-1]+a[1]);
dp数组状态:52 52 52 52 52 52 52 52
i=2;
dp[8]=max(dp[8],dp[8-5]+a[2]);
dp[7]=max(dp[7],dp[7-5]+a[2]);
dp[6]=max(dp[6],dp[6-5]+a[2]);
dp[5]=max(dp[5],dp[5-5]+a[2]);
dp数组状态:52 52 52 52 122 122 122 122
i=3
dp[8]=max(dp[8],dp[8-3]+a[3]);
dp[7]=max(dp[7],dp[7-3]+a[3]);
dp[6]=max(dp[6],dp[6-3]+a[3]);
dp[5]=max(dp[5],dp[5-3]+a[3]);
dp[4]=max(dp[4],dp[4-3]+a[3]);
dp[3]=max(dp[3],dp[3-3]+a[3]);
dp数组状态:52 52 100 100 100 100 100 170
i=4;
dp[8]=max(dp[8],dp[8-3]+a[4]);
dp[7]=max(dp[7],dp[7-3]+a[4]);
dp[6]=max(dp[6],dp[6-3]+a[4]);
dp[5]=max(dp[5],dp[5-3]+a[4]);
dp[4]=max(dp[4],dp[4-3]+a[4]);
dp[3]=max(dp[3],dp[3-3]+a[4]);
dp数组状态 52 52 138 138 138 138 138 170
i=5;
dp[8]=max(dp[8],dp[8-1]+a[5]);
dp[7]=max(dp[7],dp[7-1]+a[5]);
dp[6]=max(dp[6],dp[6-1]+a[5]);
dp[5]=max(dp[5],dp[5-1]+a[5]);
dp[4]=max(dp[4],dp[4-1]+a[5]);
dp[3]=max(dp[3],dp[3-1]+a[5]);
dp[2]=max(dp[2],dp[2-1]+a[5]);
dp[1]=max(dp[1],dp[1-1]+a[5]);
dp数组状态:88 88 174 174 174 174 174 174
i=6;
dp[8]=max(dp[8],dp[8-2]+a[6]);
dp[7]=max(dp[7],dp[7-2]+a[6]);
dp[6]=max(dp[6],dp[6-2]+a[6]);
dp[5]=max(dp[5],dp[5-2]+a[6]);
dp[4]=max(dp[4],dp[4-2]+a[6]);
dp[3]=max(dp[3],dp[3-2]+a[6]);
dp[2]=max(dp[2],dp[2-2]+a[6]);
dp数组状态 88 134 174 174 174 174 174 174
以上为dp过程详解,但不是用差值作为价值dp。差值原理是一致的。只是数值可能不一样。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
int max_(int x,int y)
{
return x>y?x:y;
}
long long dp[1005];//开long long
int main()
{
int n,x,lose[1005]={0},win[1005]={0},a[1005]={0},f[1005],tmp=0;
scanf("%d%d",&n,&x);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&lose[i],&win[i],&a[i]);
tmp+=lose[i];//基础值累加存起来
f[i]=win[i]-lose[i];//用差值作为dp的价值
}
for(int i=1;i<=n;i++)//各个好友依次遍历
{
for(int j=x;j>=a[i];j--)
{
dp[j]=max_(dp[j],dp[j-a[i]]+f[i]); //dp过程详情见上文
}
}
long long ans=(dp[x]+tmp)*5;
printf("%lld",ans);
}
P1002 [NOIP2002 普及组] 过河卒
# [NOIP2002 普及组] 过河卒
## 题目描述
棋盘上 $A$ 点有一个过河卒,需要走到目标 $B$ 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 $C$ 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,$A$ 点 $(0, 0)$、$B$ 点 $(n, m)$,同样马的位置坐标是需要给出的。
![](https://cdn.luogu.com.cn/upload/image_hosting/vg6k477j.png)
现在要求你计算出卒从 $A$ 点能够到达 $B$ 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
## 输入格式
一行四个正整数,分别表示 $B$ 点坐标和马的坐标。
## 输出格式
一个整数,表示所有的路径条数。
## 样例 #1
### 样例输入 #1
```
6 6 3 3
```
### 样例输出 #1
```
6
```
## 提示
对于 $100 \%$ 的数据,$1 \le n, m \le 20$,$0 \le$ 马的坐标 $\le 20$。
**【题目来源】**
NOIP 2002 普及组第四题
思路:首先我们要了解一个公式:
在平面内,从点 (0,0)(0,0) 到点 (x,y)(x,y) 的路径数;
f[x][y]=f[x-1][y]+f[x][y-1]f[x][y]=f[x−1][y]+f[x][y−1]
证明:
该题中,卒只能往下和右走,所以b点只有左边的点和上面的点可以到达
所以:f[x][y]=f[x-1][y]+f[x][y-1];
再一个我们需要判断左边界和上边界:
上边界:
上边界的时候只有同一行的可以到达,
所以有:f[x][y]=f[x-1][y];
左边界:
只存在上方的可以到达该点
所以:f[x][y]=f[x][y-1];
还有特殊的起点:f[0][0]没有其他的点可以到这里,所以就只有一条路径
这里解释一下:上述这句话是有点问题的,我们可以这样理解,现有
0 1 2
0 a b c
这么一个坐标系,a作为(0 ,0),若我们要求b的路径数,根据f[x][y]=f[x-1][y]可知,b的路径数等于a的路径数,也就是1条。其实简单一点理解也就是自己到自己也是路径也就是1(也就是上面那句话(虽然有点不好理解))。
代码实现:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
int n,m,x,y;
long long a[25][25],dp[25][25];
int main()
{
scanf("%d%d%d%d",&n,&m,&x,&y);
a[x][y]=1;
int next[8][2]={{-1,-2},{1,2},{-1,2},{1,-2},{2,-1},{-2,1},{2,1},{-2,-1}};//马的八步
for(int i=0;i<8;i++)//马限制点的设置
{
int t1=x+next[i][0];
int t2=y+next[i][1];
if(t1>=0&&t2<=20)//判断越界
{
a[t1][t2]=1;
}
}
//dp过程
for(int i=0;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
if(a[i][j]!=1)//该点没有被马限制
{
if((i==0&&j==0))//0,0点特殊处理
{
dp[i][j]=1;
}
else if(i==0&&j>0)//上边界
{
dp[i][j]=dp[i][j-1];
}
else if(i>0&&j==0)//左边界
{
dp[i][j]=dp[i-1][j];
}
else dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
}
printf("%lld",dp[n][m]);
}