一道竞赛难度的经典极限母题

        今天和大家分享一道竞赛经典母题,掌握了这道题目,就可以出无数道同一种思路,思考方式的题目,因为这是母题,出题老头就是根据母题然后经过一系列等价改变来诱惑我们,废话不多说,我们直接看题目。

 说一下我看到这道题目的大概思路,在左边等式,积分与求和并存,但是却不统一,于是我的第一想法就是“等价划归,统一形式”,然后接下来就是一系列的变形,这里会用到推广的第一积分中值定理,拉格朗日中值定理,黎曼函数的定积分定义,定积分定义,我先给出这些定理的证明。再来做这一道竞赛题目。

推广的第一积分中值定理的证明:

 拉格朗日中值定理的证明:

下面给出我做这道题目的心路历程,中间思考了很多,做了很多次尝试。

下面给出一道例题:

下面给出一道题目大家自己试一下,这一类题目“统一”的思想非常重要。

例题2(16年初赛题):

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力进大厂的新青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值