探秘蓝耘元生代:ComfyUI 工作流创建与网络安全的奇妙羁绊

探索元生代:ComfyUI 工作流与计算机视觉的奇妙邂逅-CSDN博客 

工作流 x 深度学习:揭秘蓝耘元生代如何用 ComfyUI 玩转 AI 开发-CSDN博客 

更多文章推荐:小周不想卷-CSDN博客

目录

一、初遇蓝耘元生代与 ComfyUI

二、ComfyUI 工作流的魅力与潜在风险

(一)ComfyUI 工作流的魅力

(二)潜在风险

三、网络安全:守护蓝耘元生代工作流的盾牌

(一)数据安全

(二)模型安全

(三)网络通信安全

四、实战:在蓝耘元生代平台创建安全的 ComfyUI 工作流 

(一)需求分析

(二)工作流设计

(三)安全实现

1. 数据安全

2. 模型安全

3. 网络通信安全

(四)测试与优化

五、蓝耘元生代品牌建设与网络安全的相互促进

(一)网络安全提升品牌形象

(二)品牌建设推动网络安全发展

六、深入剖析 ComfyUI 工作流中的网络安全隐患

(一)节点配置不当引发的安全问题

(二)第三方插件带来的风险

(三)模型训练过程中的安全挑战

七、学生视角下参与平台安全建设的实践与成长

八、网络安全竞赛中的 ComfyUI 工作流攻防实战

九、未来展望:ComfyUI 工作流与网络安全的融合趋势


一、初遇蓝耘元生代与 ComfyUI

 

刚接触计算机科学与技术专业的时候,我就像个无头苍蝇,啥都想学,可又不知道从哪儿开始。直到有一天,老师在课堂上提到了蓝耘元生代这个平台,说它能实现各种超酷的工作流,尤其是那个 ComfyUI,用起来就跟搭积木似的,能快速搭建出复杂的模型和应用。

我当时就来了兴趣,一下课就赶紧去研究。刚打开 ComfyUI,就被它那可视化的界面吸引住了。一个个节点就像拼图块,只要把它们拖一拖、连一连,就能创建出属于自己的工作流。我试着搭建了一个简单的图像分类工作流,没想到还真成功了!看着模型一点点训练,最后输出准确的分类结果,那种成就感简直爆棚。

不过,在兴奋之余,我也隐隐约约感觉到,这么方便的平台,背后肯定藏着不少安全隐患。毕竟,网络世界就像个大江湖,到处都有不法分子盯着你的数据和成果,稍有不慎,就可能被他们钻了空子。

 登录与注册:打开浏览器,访问蓝耘 GPU 智算云平台官网(https://cloud.lanyun.net//#/registerPage?promoterCode=0131 )。新用户需先进行注册,注册成功后即可享受免费体验 18 小时算力的优惠。登录后,用户将进入蓝耘平台的控制台,在这里可以看到丰富的功能模块,如容器云市场、应用市场等 。​​

二、ComfyUI 工作流的魅力与潜在风险

(一)ComfyUI 工作流的魅力

ComfyUI 的魅力可不止于它的可视化操作。它的模块化设计简直太赞了,每个节点都有特定的功能,而且可以随意组合。比如说,我想做一个文本生成的工作流,只需要把数据加载节点、模型训练节点和文本生成节点连起来,再调整一下参数,一个简单的文本生成器就诞生了。

而且,ComfyUI 还支持各种深度学习框架,像 TensorFlow、PyTorch 啥的,这就意味着我可以根据自己的需求选择最合适的框架来搭建工作流。另外,它还有丰富的插件库,能让我轻松扩展工作流的功能。比如说,我可以添加一个数据增强插件,让训练数据变得更加多样化,从而提高模型的性能。

(二)潜在风险

但是,这么强大的功能也带来了不少潜在风险。就拿数据安全来说吧,ComfyUI 工作流中涉及到大量的数据,这些数据可能包含用户的隐私信息、商业机密啥的。如果这些数据在传输或存储过程中没有得到妥善的保护,就很容易被泄露。

比如说,我之前搭建的那个图像分类工作流,用到了一批包含人脸信息的图像数据。要是这些数据没有加密,被黑客截获了,那用户的隐私就全暴露了。还有模型安全方面,如果工作流中的模型被篡改,那输出的结果就会变得不可靠,甚至可能导致严重的后果。

再就是网络通信安全,ComfyUI 工作流需要和外部服务器进行通信,这就给了黑客可乘之机。他们可以通过中间人攻击、DDoS 攻击等手段,干扰工作流的正常运行,甚至窃取数据。

三、网络安全:守护蓝耘元生代工作流的盾牌

 

(一)数据安全

为了保护 ComfyUI 工作流中的数据安全,我们可以采取一系列措施。首先,数据加密是必不可少的。在数据传输过程中,我们可以使用 SSL/TLS 协议对数据进行加密,这样即使数据被截获,黑客也无法解读其中的内容。

import socket
import ssl

# 服务器端代码
def start_server():
    server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server_socket.bind(('localhost', 8443))
    server_socket.listen(1)

    context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
    context.load_cert_chain(certfile='server.crt', keyfile='server.key')

    while True:
        conn, addr = server_socket.accept()
        secure_conn = context.wrap_socket(conn, server_side=True)
        try:
            data = secure_conn.recv(1024)
            print(f"Received: {data.decode()}")
            secure_conn.sendall(b"Message received")
        except ssl.SSLError as e:
            print(f"SSL error: {e}")
        finally:
            secure_conn.close()

# 客户端代码
def start_client():
    client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    context = ssl.create_default_context(ssl.Purpose.SERVER_AUTH)
    context.load_verify_locations('server.crt')

    secure_socket = context.wrap_socket(client_socket, server_hostname='localhost')
    try:
        secure_socket.connect(('localhost', 8443))
        message = "Hello, server!"
        secure_socket.sendall(message.encode())
        response = secure_socket.recv(1024)
        print(f"Server response: {response.decode()}")
    except ssl.SSLError as e:
        print(f"SSL error: {e}")
    finally:
        secure_socket.close()

在上面的代码中,我们使用了 Python 的requests库和ssl模块来发送一个加密的 HTTP 请求。通过ssl.create_default_context()创建一个 SSL 上下文,并将其传递给requests.get()方法的ssl_context参数,这样就可以确保数据在传输过程中是加密的。

在数据存储方面,我们可以使用对称加密算法(如 AES)对数据进行加密。以下是一个简单的 AES 加密和解密的示例代码:

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad, unpad
import os

# 生成一个随机的密钥
key = os.urandom(16)

# 初始化加密器
cipher = AES.new(key, AES.MODE_CBC)

# 要加密的数据
data = b"Hello, World!"

# 填充数据
padded_data = pad(data, AES.block_size)

# 加密数据
ciphertext = cipher.encrypt(padded_data)

# 初始化解密器
decipher = AES.new(key, AES.MODE_CBC, cipher.iv)

# 解密数据
decrypted_data = decipher.decrypt(ciphertext)

# 去除填充
unpadded_data = unpad(decrypted_data, AES.block_size)

print("Original data:", data)
print("Decrypted data:", unpadded_data)

(二)模型安全

模型安全也是非常重要的。为了防止模型被篡改,我们可以对模型进行数字签名。在模型训练完成后,使用私钥对模型进行签名,在使用模型时,使用公钥对签名进行验证。如果签名验证失败,就说明模型可能被篡改了。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
import pickle

# 生成密钥对
def generate_key_pair():
    private_key = rsa.generate_private_key(
        public_exponent=65537,
        key_size=2048,
        backend=default_backend()
    )
    public_key = private_key.public_key()
    return private_key, public_key

# 对模型进行签名
def sign_model(model, private_key):
    model_bytes = pickle.dumps(model)
    signature = private_key.sign(
        model_bytes,
        padding.PSS(
            mgf=padding.MGF1(hashes.SHA256()),
            salt_length=padding.PSS.MAX_LENGTH
        ),
        hashes.SHA256()
    )
    return signature

# 验证模型签名
def verify_model(model, signature, public_key):
    model_bytes = pickle.dumps(model)
    try:
        public_key.verify(
            signature,
            model_bytes,
            padding.PSS(
                mgf=padding.MGF1(hashes.SHA256()),
                salt_length=padding.PSS.MAX_LENGTH
            ),
            hashes.SHA256()
        )
        return True
    except Exception:
        return False

(三)网络通信安全

在网络通信方面,我们可以使用防火墙来阻止未经授权的访问。防火墙可以根据预设的规则,对进出网络的数据包进行过滤,只允许合法的数据包通过。

另外,我们还可以使用入侵检测系统(IDS)和入侵防御系统(IPS)来实时监测网络中的异常活动。当检测到异常活动时,IDS 会发出警报,而 IPS 则会自动采取措施来阻止攻击。

以下是一个简单的 Python 脚本,用于模拟一个基本的防火墙规则:

# 允许的IP地址列表
allowed_ips = ['192.168.1.100', '192.168.1.101']

# 模拟一个数据包的源IP地址
source_ip = '192.168.1.100'

if source_ip in allowed_ips:
    print("允许该数据包通过")
else:
    print("阻止该数据包通过")

四、实战:在蓝耘元生代平台创建安全的 ComfyUI 工作流 

 

(一)需求分析

现在,我要在蓝耘元生代平台上创建一个安全的图像生成工作流。这个工作流的主要功能是根据用户输入的文本描述生成相应的图像。为了确保工作流的安全性,我需要在数据安全、模型安全和网络通信安全方面采取一系列措施。

(二)工作流设计

首先,我要设计工作流的节点。主要包括数据输入节点、文本处理节点、图像生成模型节点和图像输出节点。

数据输入节点负责接收用户输入的文本描述,文本处理节点对输入的文本进行预处理,图像生成模型节点根据预处理后的文本生成图像,图像输出节点将生成的图像返回给用户。

(三)安全实现

1. 数据安全

在数据输入节点,对用户输入的文本进行加密处理。可以使用对称加密算法(如 AES)对文本进行加密,然后将加密后的文本传输到文本处理节点。

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
import os

# 生成一个随机的密钥
key = os.urandom(16)

# 初始化加密器
cipher = AES.new(key, AES.MODE_CBC)

# 用户输入的文本
text = "生成一张美丽的风景图"

# 将文本转换为字节类型
text_bytes = text.encode('utf-8')

# 填充数据
padded_text = pad(text_bytes, AES.block_size)

# 加密数据
ciphertext = cipher.encrypt(padded_text)

print("加密后的文本:", ciphertext)

在图像输出节点,对生成的图像进行加密存储。同样可以使用 AES 算法对图像进行加密,然后将加密后的图像存储到指定的位置。

2. 模型安全

对图像生成模型进行数字签名,确保模型的完整性。在模型训练完成后,使用私钥对模型进行签名,在使用模型时,使用公钥对签名进行验证。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes

# 生成私钥
private_key = rsa.generate_private_key(
    public_exponent=65537,
    key_size=2048,
    backend=default_backend()
)

# 生成公钥
public_key = private_key.public_key()

# 序列化私钥和公钥
private_pem = private_key.private_bytes(
    encoding=serialization.Encoding.PEM,
    format=serialization.PrivateFormat.PKCS8,
    encryption_algorithm=serialization.NoEncryption()
)

public_pem = public_key.public_bytes(
    encoding=serialization.Encoding.PEM,
    format=serialization.PublicFormat.SubjectPublicKeyInfo
)

# 模拟模型数据
model_data = b"Image generation model data"

# 对模型数据进行签名
signature = private_key.sign(
    model_data,
    padding.PSS(
        mgf=padding.MGF1(hashes.SHA256()),
        salt_length=padding.PSS.MAX_LENGTH
    ),
    hashes.SHA256()
)

# 验证签名
try:
    public_key.verify(
        signature,
        model_data,
        padding.PSS(
            mgf=padding.MGF1(hashes.SHA256()),
            salt_length=padding.PSS.MAX_LENGTH
        ),
        hashes.SHA256()
    )
    print("Signature is valid.")
except Exception as e:
    print("Signature is invalid:", e)
3. 网络通信安全

在工作流的各个节点之间,使用 SSL/TLS 协议进行数据传输。确保数据在传输过程中是加密的,防止数据被窃取或篡改。

import requests
import ssl

# 创建一个SSL上下文
context = ssl.create_default_context()

# 发送加密请求
response = requests.get('https://example.com', verify=True, ssl_context=context)
print(response.text)

(四)测试与优化

在完成工作流的创建和安全实现后,需要对工作流进行测试。可以使用一些测试工具,如 Postman,对工作流的各个接口进行测试,检查数据的加密和解密是否正常,模型的签名验证是否通过,网络通信是否安全等。

如果在测试过程中发现问题,需要及时进行优化。比如,如果发现数据加密算法的性能不佳,可以尝试更换更高效的加密算法;如果发现模型签名验证失败,需要检查私钥和公钥的使用是否正确。

五、蓝耘元生代品牌建设与网络安全的相互促进

 

(一)网络安全提升品牌形象

在蓝耘元生代平台上,用户最关心的就是数据安全和隐私保护。如果平台能够提供可靠的网络安全保障,用户就会对平台更加信任,从而提升平台的品牌形象。

比如说,如果用户在使用 ComfyUI 工作流时,不用担心数据泄露和模型被篡改的问题,他们就会更愿意使用平台的服务。而且,良好的网络安全记录还可以吸引更多的用户和合作伙伴,为平台的发展带来更多的机会。

(二)品牌建设推动网络安全发展

随着蓝耘元生代平台的品牌建设不断推进,平台的用户数量和业务规模也会不断扩大。这就对网络安全提出了更高的要求。

为了满足用户的需求,平台需要不断加强网络安全防护能力。比如说,投入更多的资源进行安全技术研发,引进更先进的安全设备和系统,加强安全团队的建设等。同时,品牌建设也可以促进平台与其他安全机构和企业的合作,共同推动网络安全技术的发展。

六、深入剖析 ComfyUI 工作流中的网络安全隐患

(一)节点配置不当引发的安全问题

在 ComfyUI 工作流里,节点配置就像是给每个 “小工人” 分配任务和权限。要是配置不当,就会留下安全隐患。比如说,有些节点可能默认开放了不必要的端口,这就好比给黑客留了个 “窗户”,他们可以通过这些端口偷偷进入系统。

我曾经在一个工作流中发现,数据存储节点的访问权限设置得过于宽松,任何人都可以读取和修改数据。这要是在实际应用中,后果不堪设想。黑客可以轻松地篡改数据,让模型的训练结果变得毫无意义,甚至可能泄露敏感信息。

还有节点之间的通信协议,如果使用了不安全的协议,数据在传输过程中就容易被窃取或篡改。例如,使用 HTTP 协议而不是 HTTPS 协议,数据就像在 “裸奔”,黑客可以通过中间人攻击,截获并修改数据。

# 不安全的HTTP请求示例
import requests

response = requests.get('http://example.com')
print(response.text)

# 安全的HTTPS请求示例
import requests
import ssl

context = ssl.create_default_context()
response = requests.get('https://example.com', verify=True, ssl_context=context)
print(response.text)

(二)第三方插件带来的风险

ComfyUI 的插件库很丰富,这确实给我们带来了很多便利,但也带来了安全风险。第三方插件的开发者水平参差不齐,有些插件可能存在安全漏洞。

比如说,有些插件可能会收集用户的敏感信息,而没有经过用户的同意。还有些插件可能会在后台执行恶意代码,导致系统被攻击。我在使用一个图像增强插件时,就发现它会在未经授权的情况下访问我的文件系统,这让我感到非常不安。

为了降低第三方插件带来的风险,我们在使用插件时要谨慎选择。尽量选择那些知名开发者开发的、经过安全审计的插件。同时,要定期更新插件,以修复可能存在的安全漏洞。

(三)模型训练过程中的安全挑战

在 ComfyUI 工作流中,模型训练是一个关键环节。但这个过程也面临着很多安全挑战。比如说,训练数据可能被污染,黑客可以在训练数据中注入恶意样本,让模型学习到错误的知识。

还有模型的梯度信息,在分布式训练中,梯度信息的传输和聚合过程可能会泄露模型的隐私。黑客可以通过分析梯度信息,推断出训练数据的特征和模型的参数。

为了保护模型训练过程的安全,我们可以采用差分隐私技术,对训练数据进行加噪处理,在不影响模型性能的前提下,保护数据的隐私。同时,在梯度信息的传输和聚合过程中,使用安全多方计算技术,确保梯度信息的安全性。

# 简单的差分隐私加噪示例
import numpy as np

# 原始数据
data = np.array([1, 2, 3, 4, 5])

# 加入噪声
noise = np.random.laplace(0, 1, len(data))
noisy_data = data + noise

print("原始数据:", data)
print("加噪后的数据:", noisy_data)

七、学生视角下参与平台安全建设的实践与成长

 

作为计算机专业的学生,我有幸参与了学校与蓝耘元生代平台合作的一个安全测试项目,这段经历让我收获满满。

项目初期,我负责对 ComfyUI 工作流的节点权限配置进行检查。刚开始时,面对复杂的节点网络,我完全摸不着头脑,经常漏检一些隐藏的权限漏洞。后来我自己制作了一个权限检查清单,按照数据输入节点、处理节点、输出节点的顺序,逐一核对每个节点的读写权限、网络访问权限等。通过这个笨办法,我居然发现了好几个默认配置存在问题的节点,比如某个数据预处理节点默认允许外部 IP 访问,这无疑是个巨大的安全隐患。当我把这些问题反馈给平台开发团队时,他们都对我竖起了大拇指,这让我信心大增。

在学习使用漏洞扫描工具时,我也遇到了不少困难。像 OpenVAS 这种专业的扫描工具,操作界面复杂,各种参数设置让人眼花缭乱。我只能一边查阅官方文档,一边在测试环境中反复尝试。记得有一次扫描工作流时,工具报出了几十个漏洞,我一开始完全不知道怎么区分哪些是真正的威胁,哪些是误报。后来我通过对比漏洞描述、查看相关的 CVE(常见漏洞和披露)编号,结合工作流的实际业务逻辑,慢慢学会了筛选有效漏洞。这个过程虽然辛苦,但让我对网络安全漏洞有了更深刻的理解。

参与项目的过程中,我还和团队成员一起模拟了一次数据泄露应急演练。我们设定了一个场景:黑客通过攻击数据存储节点,窃取了部分用户的隐私数据。接到 “警报” 后,我们按照事先制定的应急流程,先迅速隔离了受影响的工作流和服务器,防止数据进一步泄露;然后通过日志分析,定位到攻击源 IP;接着对泄露的数据进行加密处理,并通知受影响的用户修改密码。虽然这只是一次模拟演练,但整个过程紧张刺激,让我切身体会到了安全事件处理的重要性和复杂性。

通过这次实践,我不仅学到了很多实用的安全技术,更重要的是培养了安全思维。现在我看到任何一个工作流,都会下意识地从数据流向、权限分配、通信安全等多个角度去分析潜在风险。这种思维方式对我的专业学习也产生了积极影响,在其他课程的项目开发中,我也会更加注重安全设计,避免出现低级的安全漏洞。

八、网络安全竞赛中的 ComfyUI 工作流攻防实战

 

学校组织的网络安全竞赛是检验学习成果的绝佳舞台,我和队友组队报名参加了其中的 AI 安全赛道,专门针对 ComfyUI 工作流进行攻防对抗。

比赛初期,我们先对 ComfyUI 工作流的常见安全漏洞进行了梳理和研究。我们发现,很多参赛队伍在搭建工作流时,为了追求快速实现功能,往往忽略了安全配置。比如有的队伍使用默认的弱密码连接数据库节点,还有的直接将模型训练数据暴露在公网存储桶中。针对这些漏洞,我们编写了自动化的漏洞扫描脚本。

import requests

# 检测数据库节点弱密码
def check_database_password(url, default_password):
    data = {
        "username": "admin",
        "password": default_password
    }
    response = requests.post(url, data=data)
    if response.status_code == 200:
        print(f"发现弱密码漏洞,默认密码:{default_password}")
    else:
        print("未发现弱密码漏洞")

# 示例调用
check_database_password("http://workflow.example.com/database/login", "123456")

在攻击环节,我们尝试对其他队伍的工作流进行渗透。有一次,我们发现一支队伍的图像生成工作流存在输入验证漏洞。我们构造了特殊的文本输入,其中包含恶意的 SQL 语句,没想到真的成功注入到了后端数据库,获取到了部分用户数据。不过我们并没有进一步扩散这些数据,而是将漏洞信息反馈给了比赛主办方,帮助他们修复问题。

防守方面,我们对自己的工作流进行了全方位的加固。除了常规的加密、权限控制措施,我们还引入了 AI 实时检测系统。这个系统基于机器学习算法,通过分析工作流的运行日志和网络流量,实时识别异常行为。比如当检测到短时间内有大量来自同一 IP 的请求,且请求数据格式异常时,系统会自动封禁该 IP,并向我们发出警报。

在比赛的最后阶段,我们和另一支实力强劲的队伍展开了激烈的攻防拉锯战。他们试图攻击我们的模型节点,而我们则不断优化防御策略,及时修补新发现的漏洞。最终,凭借更全面的安全防护和更快速的漏洞修复能力,我们成功守住了自己的工作流,还找出了对方的几个关键漏洞,获得了比赛的冠军。这次竞赛经历让我深刻体会到,网络安全攻防是一场永无止境的博弈,只有不断学习和创新,才能在这场博弈中占据上风。

九、未来展望:ComfyUI 工作流与网络安全的融合趋势

随着技术的不断发展,ComfyUI 工作流和网络安全的融合将越来越深入,呈现出一些令人期待的趋势。

首先是自动化和智能化安全防护的普及。未来,或许会出现专门针对 ComfyUI 工作流的智能安全助手。当我们创建工作流时,这个助手能实时分析节点配置和数据流向,自动识别潜在的安全风险,并给出详细的修复建议。比如发现两个节点之间的数据传输没有加密,它会直接提供加密算法的选择和代码示例,甚至能自动帮我们完成部分配置工作。在安全检测方面,基于人工智能的检测系统将更加智能,不仅能识别已知的攻击模式,还能通过机器学习发现新型的、未知的攻击行为,实现真正的主动防御。

其次,零信任架构会在蓝耘元生代平台得到更广泛的应用。传统的网络安全防护是基于边界防护的理念,认为内部网络是可信的。但在零信任架构下,无论是平台内部还是外部的访问请求,都需要经过严格的身份验证和权限检查。比如用户在访问自己创建的 ComfyUI 工作流时,每次操作都要重新进行身份验证,而且权限会根据操作的内容和环境动态调整。即使黑客获取了用户的部分权限,也无法在平台内随意横冲直撞,大大降低了安全风险。

再者,隐私计算技术将成为保护数据安全的关键。在 ComfyUI 工作流中,涉及到大量的用户数据,如何在保证数据可用的前提下保护用户隐私是一个重要课题。未来,联邦学习、同态加密等隐私计算技术会得到更成熟的应用。例如,多个机构可以在不共享原始数据的情况下,通过联邦学习共同训练模型;同态加密技术能让数据在加密状态下进行计算,计算结果解密后依然准确,这样既实现了数据的价值,又保护了数据隐私。

最后,安全与开发的融合会更加紧密。在传统的开发模式中,安全往往是在项目后期才考虑的事情,但在未来,安全会贯穿 ComfyUI 工作流开发的全过程。开发工具将内置更多的安全功能,比如代码编辑器会实时检查代码中的安全漏洞,工作流设计器会强制要求完成必要的安全配置才能发布。同时,开发团队和安全团队的协作会更加频繁和深入,形成一种 “安全即开发,开发即安全” 的文化氛围。

评论 74
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小周不想卷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值