同余的性质
此处的 d 为最大公约数 \textcolor{red}{此处的d为最大公约数} 此处的d为最大公约数
1、性质一
若
a
1
≡
b
1
(
m
o
d
a_1\equiv b_1(mod
a1≡b1(mod
m
)
m)
m),
a
2
≡
b
2
(
m
o
d
a_2\equiv b_2(mod
a2≡b2(mod
m
)
m)
m),则:
{
a
1
+
a
2
≡
b
1
+
b
2
(
m
o
d
m
)
a
1
−
a
2
≡
b
1
−
b
2
(
m
o
d
m
)
\begin{cases} a_1+a_2\equiv b_1+b_2(modm) \\ a_1-a_2\equiv b_1-b_2(modm) \end{cases}
{a1+a2≡b1+b2(modm)a1−a2≡b1−b2(modm)
特别的:
a
1
±
k
1
≡
b
1
±
k
1
(
m
o
d
m
)
a_1\pm k_1\equiv b_1\pm k_1(modm)
a1±k1≡b1±k1(modm)
a
1
a
2
≡
b
1
b
2
(
m
o
d
m
)
a_1a_2\equiv b_1b_2(modm)
a1a2≡b1b2(modm)
2、性质二
若 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m), n n n为正整数,则 a n ≡ b n ( m o d a^n\equiv b^n(mod an≡bn(mod m ) m) m)
3、性质三
设 a d ≡ b d ( m o d ad\equiv bd(mod ad≡bd(mod m ) m) m),若 g c d ( d , m ) = 1 gcd(d,m)=1 gcd(d,m)=1,则 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m)
4、性质四
设 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m),若 d ∣ m d|m d∣m,则 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m)
5、性质五
设 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m),若 d d d是 a a a, b b b, m m m的公因子,则 a d ≡ b d ( m o d \frac{a}{d}\equiv \frac{b}{d}(mod da≡db(mod m d ) \frac{m}{d}) dm)
例如:
8
≡
2
(
m
o
d
8\equiv 2(mod
8≡2(mod
6
)
6)
6)
⇒
\Rarr
⇒
4
≡
1
(
m
o
d
4\equiv 1(mod
4≡1(mod
3
)
3)
3)
6、性质六
若 a ≡ b ( m o d a\equiv b(mod a≡b(mod m i ) m_i) mi), i = 1 , 2 , ⋯ , k i=1,2,\cdots,k i=1,2,⋯,k,则 a ≡ b ( m o d a\equiv b(mod a≡b(mod [ m 1 , m 2 , ⋯ , m k ] ) [m_1,m_2,\cdots,m_k]) [m1,m2,⋯,mk])
例如:
32
≡
2
(
m
o
d
32\equiv 2(mod
32≡2(mod
3
)
3)
3),
32
≡
2
(
m
o
d
32\equiv 2(mod
32≡2(mod
5
)
5)
5),可得:
32
≡
2
(
m
o
d
32\equiv2(mod
32≡2(mod
15
)
15)
15)
7、性质七
若 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m), d ∣ m d|m d∣m, d > 0 d>0 d>0,则 a ≡ b ( m o d a\equiv b(mod a≡b(mod d ) d) d)
8、性质八
若 a ≡ b ( m o d a\equiv b(mod a≡b(mod m ) m) m),则 g c d ( a , m ) = g c d ( b , m ) gcd(a,m)=gcd(b,m) gcd(a,m)=gcd(b,m)因而若 d d d能整除 m m m及 a a a, b b b两数之一,则 d d d必能整除 a a a, b b b中的另一个
例如:
21
≡
15
(
m
o
d
21\equiv 15(mod
21≡15(mod
6
)
6)
6)得:
g
c
d
(
21
,
6
)
=
g
c
d
(
15
,
6
)
=
3
gcd(21,6)=gcd(15,6)=3
gcd(21,6)=gcd(15,6)=3