同余的性质

同余的性质

此处的 d 为最大公约数 \textcolor{red}{此处的d为最大公约数} 此处的d为最大公约数

1、性质一

a 1 ≡ b 1 ( m o d a_1\equiv b_1(mod a1b1(mod m ) m) m) a 2 ≡ b 2 ( m o d a_2\equiv b_2(mod a2b2(mod m ) m) m),则:
{ a 1 + a 2 ≡ b 1 + b 2 ( m o d m ) a 1 − a 2 ≡ b 1 − b 2 ( m o d m ) \begin{cases} a_1+a_2\equiv b_1+b_2(modm) \\ a_1-a_2\equiv b_1-b_2(modm) \end{cases} {a1+a2b1+b2(modm)a1a2b1b2(modm)

特别的: a 1 ± k 1 ≡ b 1 ± k 1 ( m o d m ) a_1\pm k_1\equiv b_1\pm k_1(modm) a1±k1b1±k1(modm)
a 1 a 2 ≡ b 1 b 2 ( m o d m ) a_1a_2\equiv b_1b_2(modm) a1a2b1b2(modm)

2、性质二

a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m) n n n为正整数,则 a n ≡ b n ( m o d a^n\equiv b^n(mod anbn(mod m ) m) m)

3、性质三

a d ≡ b d ( m o d ad\equiv bd(mod adbd(mod m ) m) m),若 g c d ( d , m ) = 1 gcd(d,m)=1 gcd(d,m)=1,则 a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m)

4、性质四

a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m),若 d ∣ m d|m dm,则 a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m)

5、性质五

a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m),若 d d d a a a b b b m m m的公因子,则 a d ≡ b d ( m o d \frac{a}{d}\equiv \frac{b}{d}(mod dadb(mod m d ) \frac{m}{d}) dm)

例如:
8 ≡ 2 ( m o d 8\equiv 2(mod 82(mod 6 ) 6) 6) ⇒ \Rarr 4 ≡ 1 ( m o d 4\equiv 1(mod 41(mod 3 ) 3) 3)

6、性质六

a ≡ b ( m o d a\equiv b(mod ab(mod m i ) m_i) mi) i = 1 , 2 , ⋯   , k i=1,2,\cdots,k i=1,2,,k,则 a ≡ b ( m o d a\equiv b(mod ab(mod [ m 1 , m 2 , ⋯   , m k ] ) [m_1,m_2,\cdots,m_k]) [m1,m2,,mk])

例如:
32 ≡ 2 ( m o d 32\equiv 2(mod 322(mod 3 ) 3) 3) 32 ≡ 2 ( m o d 32\equiv 2(mod 322(mod 5 ) 5) 5),可得: 32 ≡ 2 ( m o d 32\equiv2(mod 322(mod 15 ) 15) 15)

7、性质七

a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m) d ∣ m d|m dm d > 0 d>0 d>0,则 a ≡ b ( m o d a\equiv b(mod ab(mod d ) d) d)

8、性质八

a ≡ b ( m o d a\equiv b(mod ab(mod m ) m) m),则 g c d ( a , m ) = g c d ( b , m ) gcd(a,m)=gcd(b,m) gcd(a,m)=gcd(b,m)因而若 d d d能整除 m m m a a a b b b两数之一,则 d d d必能整除 a a a b b b中的另一个

例如:
21 ≡ 15 ( m o d 21\equiv 15(mod 2115(mod 6 ) 6) 6)得: g c d ( 21 , 6 ) = g c d ( 15 , 6 ) = 3 gcd(21,6)=gcd(15,6)=3 gcd(21,6)=gcd(15,6)=3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会敲代码的狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值