目录
pd.read_excel
labels_df=pd.read_excel(path2labels,engine='openpyxl',index_col="ID")
读取Excel文件,将ID列作为索引,pd.read很常规的用法。值得注意的是,最新版本xlrd库不能直接读取xlsx文件了,需要额外指定引擎为openpyxl或者安装老版本的包。代码使用 pandas 库读取一个 Excel 文件,并将其内容存储在一个 DataFrame 中,使用 openpyxl 引擎来处理 Excel 文件。
- labels_df:存储读取的 Excel 文件内容的 DataFrame 的变量名。
- pd.read_excel: pandas 库中的函数,用于读取 Excel 文件。
- path2labels:变量,用于存储 Excel 文件的路径。
- engine='openpyxl':指定使用 openpyxl 作为读取 Excel 文件的引擎。openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的库。
- index_col="ID":指定将 Excel 文件中的 "ID" 列作为 DataFrame 的索引。
%matplotlib inline
%matplotlib inline
%matplotlib inline 用于在 Notebook 中嵌入 Matplotlib 的图形输出。通过这个命令可以使得Matplotlib 的图形直接显示在 Notebook 的单元格中,而不是在新窗口中打开。这个命令通常放在 Notebook 的第一个单元格中,以确保后续的所有 Matplotlib 图形都能正确显示。
sns.scatterplot
sns.scatterplot(x=labels_df['Fovea_X'], y=labels_df['Fovea_Y'],hue=AorN)
使用 seaborn 库创建一个散点图scatter plot,其中 x 轴和 y 轴分别对应 labels_df DataFrame 中的 'Fovea_X' 和 'Fovea_Y' 列,而 hue 参数则用于根据 AorN 列的值对散点进行颜色编码。
例如iChallenge-AMD-Training400年龄相关性黄斑性变数据集绘制的散点图如下: