信源熵的计算

目录

T1

在一个二进制的信道中,信源消息集 X={0,1}且 p(1)=p(0),信宿的消息集 Y={0},1,
信道传输概率 p ( y = 1 ∣ x = 0 ) = 1 / 4 p( y= 1| x= 0) = 1/ 4 p(y=1∣x=0)=1/4, p ( y = 0 ∣ x = 1 ) = 1 / 8 p( y= 0| x= 1) = 1/ 8 p(y=0∣x=1)=1/8。求:

(1)在接收端收到 y=0 后,所提供的关于传输消息 x 的平均条件互信息 I(X; y=0);
(2) 该情况下所能提供的平均互信息量 I(X; Y)。

解:
(1)
p ( y ∣ x ) = [ 3 4 1 4 1 8 7 8 ] ,   p ( x y ) =   [ 3 8 1 8 1 16 7 16 ] ,   p ( x ∣ y ) =   [ 6 7 2 9 1 7 7 9 ] \mathrm{p(y\mid x)=\begin{bmatrix}\dfrac{3}{4}&\dfrac{1}{4}\\\dfrac{1}{8}&\dfrac{7}{8}\end{bmatrix},~p(xy)=~\begin{bmatrix}\dfrac{3}{8}&\dfrac{1}{8}\\\dfrac{1}{16}&\dfrac{7}{16}\end{bmatrix},~p(x\mid y)=~\begin{bmatrix}\dfrac{6}{7}&\dfrac{2}{9}\\\dfrac{1}{7}&\dfrac{7}{9}\end{bmatrix}} p(yx)= 43814187 , p(xy)=  8316181167 , p(xy)=  76719297

p ( y = 0 ) = 3 8 + 1 16 = 7 16 p( y= 0) = \frac 38+ \frac 1{16}= \frac 7{16} p(y=0)=83+161=167
p ( y = 1 ) = 1 8 + 7 16 = 9 16 p( y= 1) = \frac 18+ \frac 7{16}= \frac 9{16} p(y=1)=81+167=169
( X : y = 0 ) = H ( X ) − H ( X ∣ 0 ) = 1 + ( 6 7 log ⁡ 6 7 + 1 7 log ⁡ 1 7 ) = 0.408 ( b i t / s y m b o l ) (X: y= 0) = H( X) - H( X| 0) = 1+ ( \frac 67\log \frac 67+ \frac 17\log \frac 17) = 0. 408( bit/ symbol) (X:y=0)=H(X)H(X∣0)=1+(76log76+71log71)=0.408(bit/symbol)

(2)
I ( X : y = 1 ) = H ( X ) − H ( X ∣ 1 ) = 1 + ( 2 9 log ⁡ 2 9 + 7 9 log ⁡ 7 9 ) = 0.236 ( b i t / s y m b o l ) I(X:y= 1) = H( X) - H( X| 1) = 1+ ( \frac 29\log \frac 29+ \frac 79\log \frac 79) = 0. 236( bit/ symbol) I(X:y=1)=H(X)H(X∣1)=1+(92log92+97log97)=0.236(bit/symbol)

I ( X ; Y ) = ∑ Y p ( y ) I ( X ; y ) = 7 16 × 0.408 + 9 16 × 0.236 ≈ 0.311 ( b i t / s y m b o l ) I(X;Y)=\sum_Yp(y)I(X;y)=\frac7{16}\times0.408+\frac9{16}\times0.236\approx0.311(bit/symbol) I(X;Y)=Yp(y)I(X;y)=167×0.408+169×0.2360.311(bit/symbol)

or: I ( X ; Y ) = H ( X ) − H ( X / Y ) I( X; Y) = H( X) - H( X/ Y) I(X;Y)=H(X)H(X/Y)

= 1 + ( 3 8 log ⁡ 6 7 + 1 8 log ⁡ 2 9 + 1 16 log ⁡ 1 7 + 7 16 log ⁡ 7 9 ) ≈ 1 − 0.6883 = 0.3117 ( b i t / s y m b o l ) =1+(\frac38\log\frac67+\frac18\log\frac29+\frac1{16}\log\frac17+\frac7{16}\log\frac79)\approx1-0.6883=0.3117(bit/symbol) =1+(83log76+81log92+161log71+167log97)10.6883=0.3117(bit/symbol)



T2

一个信源发出二重符号序列消息 ( X 1 , X 2 ) (X_1,X_2) (X1,X2),其中第一个符号 X 1 X_1 X1可以是A、B、C中的任一个,第二个符号 X 2 X_2 X2可以是D、E、F、G中的任一个。已知各个 p ( x 1 i ) p(x_{_{1i}}) p(x1i)为: p ( A ) = 1 / 2 , p ( B ) = 1 / 3 p(A)=1/2,p(B)=1/3 p(A)=1/2,p(B)=1/3,
p ( C ) = 1 / 6 p(C)=1/6 p(C)=1/6; 各个 p ( x 2 j ∣ x ı i ) p(x_{2j}|x_{\text{\i}i}) p(x2jxıi)值如下表所示。求这个信源的熵(联合熵 H ( X 1 X 2 ) ) H(X_1X_2)) H(X1X2))

X_{1i}X_{2i}ABC
D1/43/101/6
E1/41/51/2
F1/41/51/6
G1/43/101/6

解:

P ( x 2 ∣ x 1 ) = [ 1 4 1 4 1 4 1 4 3 10 1 5 1 5 3 10 1 6 1 3 1 6 1 6 ] P ( x 1 ) = [ 1 2 1 3 1 6 ] P ( x 1 x 2 ) = [ 1 8 1 8 1 8 1 8 1 10 1 15 1 15 1 10 1 36 1 12 1 36 1 36 ] \begin{gathered}P(x_2\mid x_1)=\begin{bmatrix}\dfrac{1}{4}&\dfrac{1}{4}&\dfrac{1}{4}&\dfrac{1}{4}\\\dfrac{3}{10}&\dfrac{1}{5}&\dfrac{1}{5}&\dfrac{3}{10}\\\dfrac{1}{6}&\dfrac{1}{3}&\dfrac{1}{6}&\dfrac{1}{6}\end{bmatrix}\quad P(x_1)=\begin{bmatrix}\dfrac{1}{2}\\\dfrac{1}{3}\\\dfrac{1}{6}\end{bmatrix}\quad P(x_1x_2)=\begin{bmatrix}\dfrac{1}{8}&\dfrac{1}{8}&\dfrac{1}{8}&\dfrac{1}{8}\\\dfrac{1}{10}&\dfrac{1}{15}&\dfrac{1}{15}&\dfrac{1}{10}\\\dfrac{1}{36}&\dfrac{1}{12}&\dfrac{1}{36}&\dfrac{1}{36}\end{bmatrix}\end{gathered} P(x2x1)= 41103614151314151614110361 P(x1)= 213161 P(x1x2)= 81101361811511218115136181101361
H ( X 1 X 2 ) =   4 ⋅ 1 8 ⋅ L o g ( 8 ) + 2 ⋅ 1 10 ⋅ L o g ( 10 ) + 2 ⋅ 1 15 ⋅ L o g ( 15 ) + 3 ⋅ 1 36 ⋅ L o g ( 36 ) + 1 12 ⋅ L o g ( 12 ) = 3.415 \mathrm{H}(X_{1}X_{2})=\:4\cdot\frac{1}{8}\cdot\mathrm{Log}(8)+2\cdot\frac{1}{10}\cdot\mathrm{Log}(10)+2\cdot\frac{1}{15}\cdot\mathrm{Log}(15)+3\cdot\frac{1}{36}\cdot\mathrm{Log}(36)+\frac{1}{12}\cdot\mathrm{Log}(12)=3.415 H(X1X2)=481Log(8)+2101Log(10)+2151Log(15)+3361Log(36)+121Log(12)=3.415

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值