证明直纹极小曲面是平面或者正螺旋面
证明:设极小直纹面 S S S的参数表示为 r ( u , v ) = a ( u ) + v c ( u ) . (u,v)=\mathbf{a}(u)+v\mathbf{c}(u). (u,v)=a(u)+vc(u).则
r u = a ′ + v c ′ , r v = c , r u ∧ r v = a ′ ∧ c + v c ′ ∧ c . \mathbf{r}_u=\mathbf{a}'+v\mathbf{c}',\quad\mathbf{r}_v=\mathbf{c},\quad\mathbf{r}_u\wedge\mathbf{r}_v=\mathbf{a}'\wedge\mathbf{c}+v\mathbf{c}'\wedge\mathbf{c}. ru=a′+vc′,rv=c,ru∧rv=a′∧c+vc′∧c.
故
E
=
⟨
a
′
,
a
′
⟩
+
v
⟨
a
′
,
c
′
⟩
+
v
2
⟨
c
′
,
c
′
⟩
,
F
=
a
′
∧
c
+
v
c
′
∧
c
,
G
=
⟨
c
,
c
⟩
.
E=\langle\mathbf{a}',\mathbf{a}'\rangle+v\langle\mathbf{a}',\mathbf{c}'\rangle+v^2\langle\mathbf{c}',\mathbf{c}'\rangle,\quad F=\mathbf{a}'\wedge\mathbf{c}+v\mathbf{c}'\wedge\mathbf{c},\quad G=\langle\mathbf{c},\mathbf{c}\rangle.
E=⟨a′,a′⟩+v⟨a′,c′⟩+v2⟨c′,c′⟩,F=a′∧c+vc′∧c,G=⟨c,c⟩.
为 取 得
(
u
,
v
)
( u, v)
(u,v) 是 正 交 参 数 , 即 :
F
=
0
F= 0
F=0,可 以 假 设
∣
c
(
u
)
∣
=
1
;
| \mathbf{c} ( u) | = 1;
∣c(u)∣=1; 然 后 , 经 过 参 数 变 换
u
~
=
u
,
v
~
=
v
+
∫
0
u
⟨
a
′
(
t
)
,
c
(
t
)
⟩
d
t
\widetilde{u} = u, \widetilde{v} = v+ \int _{0}^{u}\langle \mathbf{a} ^{\prime }( t) , \mathbf{c} ( t) \rangle dt
u
=u,v
=v+∫0u⟨a′(t),c(t)⟩dt,可 以 设
⟨
a
′
(
u
)
,
c
(
u
)
⟩
=
0.
\langle \mathbf{a} ^{\prime }( u) , \mathbf{c} ( u) \rangle = 0.
⟨a′(u),c(u)⟩=0.
此 时 , F = 0 , F= 0 ,F=0,且 G = 1. G=1. G=1.记 Δ = ∣ r u ∧ r v ∣ . \Delta=|\mathbf{r}_u\wedge\mathbf{r}_v|. Δ=∣ru∧rv∣.
由
r u u = a ′ ′ + v c ′ ′ , r u v = c ′ , r v v = 0 , \mathbf{r}_{uu}=\mathbf{a}''+v\mathbf{c}'',\quad\mathbf{r}_{uv}=\mathbf{c}',\quad\mathbf{r}_{vv}=\mathbf{0}, ruu=a′′+vc′′,ruv=c′,rvv=0,
有
L = 1 Δ [ ( a ′ ′ , a ′ , c ) + v ( ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) ) + v 2 ( c ′ ′ , c ′ , c ) ] , M = 1 Δ ( a ′ , c , c ′ ) , N = 0. L=\frac{1}{\Delta}[(\mathbf{a}'',\mathbf{a}',\mathbf{c})+v((\mathbf{a}',\mathbf{c},\mathbf{c}'')+(\mathbf{a}'',\mathbf{c}',\mathbf{c}))+v^2(\mathbf{c}'',\mathbf{c}',\mathbf{c})],\:M=\frac{1}{\Delta}(\mathbf{a}',\mathbf{c},\mathbf{c}'),\:N=0. L=Δ1[(a′′,a′,c)+v((a′,c,c′′)+(a′′,c′,c))+v2(c′′,c′,c)],M=Δ1(a′,c,c′),N=0.
曲面 S S S是极小的 ⇔ H = 0 ⇔ \Leftrightarrow H=0\Leftrightarrow ⇔H=0⇔ 0 = Δ ( L G − 2 M F + N E ) = ( a ′ ′ , a ′ , c ) + v ( ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) ) + v 2 ( c ′ ′ , c ′ , c ) 0=\Delta(LG-2MF+NE)=(\mathbf{a}^{\prime\prime},\mathbf{a}^{\prime},\mathbf{c})+v((\mathbf{a}^{\prime},\mathbf{c},\mathbf{c}^{\prime\prime})+(\mathbf{a}^{\prime\prime},\mathbf{c}^{\prime},\mathbf{c}))+v^2(\mathbf{c}^{\prime\prime},\mathbf{c}^{\prime},\mathbf{c}) 0=Δ(LG−2MF+NE)=(a′′,a′,c)+v((a′,c,c′′)+(a′′,c′,c))+v2(c′′,c′,c)
⇔ \Leftrightarrow ⇔
{ ( a ′ ′ , a ′ , c ) = 0 ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) = 0 ( c ′ ′ , c ′ , c ) = 0. \left.\left\{\begin{array}{c}(\mathbf{a}'',\mathbf{a}',\mathbf{c})=0\\(\mathbf{a}',\mathbf{c},\mathbf{c}'')+(\mathbf{a}'',\mathbf{c}',\mathbf{c})=0\\(\mathbf{c}'',\mathbf{c}',\mathbf{c})=0.\end{array}\right.\right. ⎩ ⎨ ⎧(a′′,a′,c)=0(a′,c,c′′)+(a′′,c′,c)=0(c′′,c′,c)=0.
由第三式,知
c
(
u
)
\mathfrak{c}(u)
c(u)在某个平面上.而由假设,
c
(
u
)
\mathfrak{c}(u)
c(u)是一条单位球面曲
线(注意
c
(
u
)
\mathbf{c}(u)
c(u) 不能为常向量), 故
c
(
u
)
\mathbf{c}(u)
c(u) 是一个单位圆.
若
a
(
u
)
\mathbf{a}(u)
a(u)为常向量,则
S
S
S是平面. 现在假设
a
(
u
)
\mathbf{a}(u)
a(u)不为常向量,即:它是一条曲线。可以设
u
u
u是曲线
a
(
u
)
\mathbf{a}(u)
a(u)的弧长参数,其 Frenet 标架为
{
a
(
u
)
;
t
(
u
)
,
n
(
u
)
,
b
(
u
)
}
\{\mathbf{a}(u);\mathbf{t}(u),\mathbf{n}(u),\mathbf{b}(u)\}
{a(u);t(u),n(u),b(u)}, 其曲率为
κ
(
u
)
\kappa(u)
κ(u),挠率为
τ
(
u
)
.
\tau(u).
τ(u).由式-(14) 中第一式,有
0 = ( a ′ ′ , a ′ , c ) = κ ( n , t , c ) = − κ ⟨ b , c ⟩ . 0= ( \mathbf{a} ^{\prime \prime }, \mathbf{a} ^{\prime }, \mathbf{c} ) = \kappa ( \mathbf{n} , \mathbf{t} , \mathbf{c} ) = - \kappa \langle \mathbf{b} , \mathbf{c} \rangle . 0=(a′′,a′,c)=κ(n,t,c)=−κ⟨b,c⟩. C O M COM COM
若 κ = 0 \kappa=0 κ=0,则 a ( u ) \mathbf{a}(u) a(u)是直线.而 c ( u ) \mathbf{c}(u) c(u)是一个单位圆.可以设
a ( u ) = ( 0 , 0 , b u ) . \mathbf{a}(u)=(0,0,bu). a(u)=(0,0,bu).
由假设 t ⊥ c ( u ) \mathbf{t}\perp\mathbf{c}(u) t⊥c(u),故
c ( u ) = ( cos u , sin u , 0 ) . \mathbf{c}(u)=(\cos u,\sin u,0). c(u)=(cosu,sinu,0).
从而,曲面 S S S的参数表达式为
r ( u , v ) = a ( u ) + v c ( u ) = ( v cos u , v sin u , b u ) . \mathbf{r}(u,v)=\mathbf{a}(u)+v\mathbf{c}(u)=(v\cos u,v\sin u,bu). r(u,v)=a(u)+vc(u)=(vcosu,vsinu,bu).
即:曲面 S S S 为正螺旋面.
若 κ \kappa κ不恒为0,只需考虑 κ ≠ 0 \kappa\neq0 κ=0的部分,则 ⟨ b , c ⟩ = 0. \langle\mathbf{b},\mathbf{c}\rangle=0. ⟨b,c⟩=0.而由假设, ⟨ t , c ⟩ = 0. \langle\mathbf{t},\mathbf{c}\rangle=0. ⟨t,c⟩=0.
故 c = ± n . \mathbf{c}=\pm\mathbf{n}. c=±n.从而,可以设 c = n . \mathbf{c}=\mathbf{n}. c=n.由式-(14)中第二式,有
0 = ( a ′ , c , c ′ ′ ) + ( a ′ ′ , c ′ , c ) = ( t , n , n ¨ ) + ( t ˙ , n ˙ , n ) = τ ˙ . 0=(\mathbf{a'},\mathbf{c},\mathbf{c''})+(\mathbf{a''},\mathbf{c'},\mathbf{c})=(\mathbf{t},\mathbf{n},\ddot{\mathbf{n}})+(\dot{\mathbf{t}},\dot{\mathbf{n}},\mathbf{n})=\dot{\tau}. 0=(a′,c,c′′)+(a′′,c′,c)=(t,n,n¨)+(t˙,n˙,n)=τ˙.
故 τ \tau τ 是常数.
若
τ
=
0
\tau=0
τ=0, 则
a
(
u
)
\mathbf{a}(u)
a(u) 为平面曲线.而
c
=
n
\mathbf{c}=\mathbf{n}
c=n 是其(主)法向量,故
S
S
S 是平面,
若
τ
≠
0
\tau\neq0
τ=0,则由式-(14)中第三式,有
0 = ( c ′ ′ , c ′ , c ) = ( n ¨ , n ˙ , n ) = κ ˙ τ . 0=(\mathbf{c''},\mathbf{c'},\mathbf{c})=(\ddot{\mathbf{n}},\dot{\mathbf{n}},\mathbf{n})=\dot{\kappa}\tau. 0=(c′′,c′,c)=(n¨,n˙,n)=κ˙τ.
因此 , κ ˙ = 0 ,\dot{\kappa}=0 ,κ˙=0,即: κ \kappa κ为常数.故 a ( u ) \mathbf{a}(u) a(u) 是圆柱螺旋线.
可以设
a
(
u
)
=
(
κ
κ
2
+
τ
2
cos
(
κ
2
+
τ
2
u
)
,
κ
κ
2
+
τ
2
sin
(
κ
2
+
τ
2
u
)
,
τ
κ
2
+
τ
2
u
)
\mathbf{a}(u)=(\frac{\kappa}{\kappa^2+\tau^2}\cos(\sqrt{\kappa^2+\tau^2}u),\frac{\kappa}{\kappa^2+\tau^2}\sin(\sqrt{\kappa^2+\tau^2}u),\frac{\tau}{\sqrt{\kappa^2+\tau^2}}u)
a(u)=(κ2+τ2κcos(κ2+τ2u),κ2+τ2κsin(κ2+τ2u),κ2+τ2τu)
则
c ( u ) = n ( u ) = ( − cos ( κ 2 + τ 2 u ) , − sin ( κ 2 + τ 2 u ) , 0 ) . \mathbf{c}(u)=\mathbf{n}(u)=(-\cos(\sqrt{\kappa^2+\tau^2}u),-\sin(\sqrt{\kappa^2+\tau^2}u),0). c(u)=n(u)=(−cos(κ2+τ2u),−sin(κ2+τ2u),0).
故
r ( u , v ) = a ( u ) + v c ( u ) = ( ( κ κ 2 + τ 2 − v ) cos ( κ 2 + τ 2 u ) , ( κ κ 2 + τ 2 − v ) sin ( κ 2 + τ 2 u ) , τ κ 2 + τ 2 u ) . \begin{aligned}\mathbf{r}(u,v)&=\mathbf{a}(u)+v\mathbf{c}(u)=((\frac{\kappa}{\kappa^{2}+\tau^{2}}-v)\cos(\sqrt{\kappa^{2}+\tau^{2}}u),\\&(\frac{\kappa}{\kappa^{2}+\tau^{2}}-v)\sin(\sqrt{\kappa^{2}+\tau^{2}}u),\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}u).\end{aligned} r(u,v)=a(u)+vc(u)=((κ2+τ2κ−v)cos(κ2+τ2u),(κ2+τ2κ−v)sin(κ2+τ2u),κ2+τ2τu).
作参数变换 v ~ = κ 2 + τ 2 u , u ~ = κ κ 2 + τ 2 − v \widetilde{v}=\sqrt{\kappa^2+\tau^2}u,\widetilde{u}=\frac\kappa{\kappa^2+\tau^2}-v v =κ2+τ2u,u =κ2+τ2κ−v,则曲面 S S S的参数表达式变为
r ( u ~ , v ~ ) = ( u ~ cos v ~ , u ~ sin v ~ , τ κ 2 + τ 2 v ~ ) . \mathbf{r}(\widetilde u,\widetilde v)=(\widetilde u\cos\widetilde v,\widetilde u\sin\widetilde v,\frac{\tau}{\kappa^2+\tau^2}\widetilde v). r(u ,v )=(u cosv ,u sinv ,κ2+τ2τv ).
故曲面 S S S 是正螺旋面.