求解球面的第二基本形式 I I II II 。
解:
球面 r ( u , v ) = ( a cos u cos v , a cos u sin v , a sin u ) \begin{array} {c}\mathbf{r}(u,v)=(a\cos u\cos v,a\cos u\sin v,a\sin u) \end{array} r(u,v)=(acosucosv,acosusinv,asinu)
有
r u = ( − a sin u cos v , − a sin u sin v , a cos u ) r v = ( − a cos u sin v , a cos u cos v , 0 ) \mathbf{r}_u=(-a\sin u\cos v,-a\sin u\sin v,a\cos u)\\\mathbf{r}_v=(-a\cos u\sin v,a\cos u\cos v,0) ru=(−asinucosv,−asinusinv,acosu)rv=(−acosusinv,acosucosv,0)
求导得
r u u = ( − a cos u cos v , − a cos u sin v , − a sin u ) r u v = ( a sin u sin v , − a sin u cos v , 0 ) r v v = ( − a cos u cos v , − a cos u sin v , 0 ) \mathbf{r}_{uu}=(-a\cos u\cos v,-a\cos u\sin v,-a\sin u)\\\mathbf{r}_{uv}=(a\sin u\sin v,-a\sin u\cos v,0)\\\mathbf{r}_{vv}=(-a\cos u\cos v,-a\cos u\sin v,0) ruu=(−acosucosv,−acosusinv,−asinu)ruv=(asinusinv,−asinucosv,0)rvv=(−acosucosv,−acosusinv,0)
法向量的坐标
e 3 = n = ( − cos u cos v , − cos u sin v , − sin u ) \mathbf{e}_{3}=\mathbf{n}=(-\cos u\cos v,-\cos u\sin v,-\sin u) e3=n=(−cosucosv,−cosusinv,−sinu)
依次做内积有
L = a , M = 0 , N = a cos 2 u L=a,M=0,N=a\cos^2u L=a,M=0,N=acos2u
于是知道其第二基本型为
I I = a d u d u + a cos 2 u d v d v II=a\mathrm{d}u\mathrm{d}u+a\cos^2u\mathrm{d}v\mathrm{d}v II=adudu+acos2udvdv
这符合球面是全脐点曲面这个事实。