求解球面的第二基本形式

求解球面的第二基本形式 I I II II

解:

球面 r ( u , v ) = ( a cos ⁡ u cos ⁡ v , a cos ⁡ u sin ⁡ v , a sin ⁡ u ) \begin{array} {c}\mathbf{r}(u,v)=(a\cos u\cos v,a\cos u\sin v,a\sin u) \end{array} r(u,v)=(acosucosv,acosusinv,asinu)

r u = ( − a sin ⁡ u cos ⁡ v , − a sin ⁡ u sin ⁡ v , a cos ⁡ u ) r v = ( − a cos ⁡ u sin ⁡ v , a cos ⁡ u cos ⁡ v , 0 ) \mathbf{r}_u=(-a\sin u\cos v,-a\sin u\sin v,a\cos u)\\\mathbf{r}_v=(-a\cos u\sin v,a\cos u\cos v,0) ru=(asinucosv,asinusinv,acosu)rv=(acosusinv,acosucosv,0)

求导得

r u u = ( − a cos ⁡ u cos ⁡ v , − a cos ⁡ u sin ⁡ v , − a sin ⁡ u ) r u v = ( a sin ⁡ u sin ⁡ v , − a sin ⁡ u cos ⁡ v , 0 ) r v v = ( − a cos ⁡ u cos ⁡ v , − a cos ⁡ u sin ⁡ v , 0 ) \mathbf{r}_{uu}=(-a\cos u\cos v,-a\cos u\sin v,-a\sin u)\\\mathbf{r}_{uv}=(a\sin u\sin v,-a\sin u\cos v,0)\\\mathbf{r}_{vv}=(-a\cos u\cos v,-a\cos u\sin v,0) ruu=(acosucosv,acosusinv,asinu)ruv=(asinusinv,asinucosv,0)rvv=(acosucosv,acosusinv,0)

法向量的坐标

e 3 = n = ( − cos ⁡ u cos ⁡ v , − cos ⁡ u sin ⁡ v , − sin ⁡ u ) \mathbf{e}_{3}=\mathbf{n}=(-\cos u\cos v,-\cos u\sin v,-\sin u) e3=n=(cosucosv,cosusinv,sinu)

依次做内积有

L = a , M = 0 , N = a cos ⁡ 2 u L=a,M=0,N=a\cos^2u L=a,M=0,N=acos2u

于是知道其第二基本型为

I I = a d u d u + a cos ⁡ 2 u d v d v II=a\mathrm{d}u\mathrm{d}u+a\cos^2u\mathrm{d}v\mathrm{d}v II=adudu+acos2udvdv

这符合球面是全脐点曲面这个事实。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值