Gauss绝妙定理
Gauss曲率 K = b g = − R 1212 g K=\frac{b}{g}=-\frac{R_{1212}}{g} K=gb=−gR1212仅依赖于曲面的第一基本形
定理理解
定义Riemann记号 R δ α β γ = g δ ε × ( R_\mathrm{\delta \alpha \beta \gamma }= g_{\delta \varepsilon }\times ( Rδαβγ=gδε×(LHS of GE),即 g δ ε g_\mathrm{\delta\varepsilon} gδε乘以Gauss方程的左端,可见Riemann记号只依赖于第一基本形 ( g α β ) (g_{\alpha\beta}) (gαβ)
注意到 b α β = b α γ g γ β , g γ β b α β = b α γ b_\alpha^\beta=b_{\alpha\gamma}g^{\gamma\beta},g_{\gamma\beta}b_\alpha^\beta=b_{\alpha\gamma} bαβ=bαγgγβ,gγβbαβ=bαγ
从而Gauss方程等价于
R δ α β γ = g δ ε ( ∂ γ Γ α β ε − ∂ β Γ α γ ε + Γ α β η Γ η γ ε − Γ α γ η Γ η β ε ) = g δ ε ( b α β b γ ε − b α γ b β ε ) = b δ γ b α β − b δ β b α γ \begin{aligned}R_{\delta\alpha\beta\gamma}&=g_{\delta\varepsilon}(\partial_{\gamma}\Gamma_{\alpha\beta}^{\varepsilon}-\partial_{\beta}\Gamma_{\alpha\gamma}^{\varepsilon}+\Gamma_{\alpha\beta}^{\eta}\Gamma_{\eta\gamma}^{\varepsilon}-\Gamma_{\alpha\gamma}^{\eta}\Gamma_{\eta\beta}^{\varepsilon})\\&=g_{\delta\varepsilon}(b_{\alpha\beta}b_{\gamma}^{\varepsilon}-b_{\alpha\gamma}b_{\beta}^{\varepsilon})\\&=b_{\delta\gamma}b_{\alpha\beta}-b_{\delta\beta}b_{\alpha\gamma}\end{aligned} Rδαβγ=gδε(∂γΓαβε−∂βΓαγε+ΓαβηΓηγε−ΓαγηΓηβε)=gδε(bαβbγε−bαγbβε)=bδγbαβ−bδβbαγ
可见 R δ α β γ R_\delta\alpha\beta\gamma Rδαβγ 的指标具有(反)对称性:(1,2)指标反对称、(3,4)指标反对称、(12,34)指标对称。
通过复杂的计算可以验证,Riemann记号
R
δ
α
β
γ
=
g
δ
ε
(
∂
γ
Γ
α
β
ε
−
∂
β
Γ
α
γ
ε
+
Γ
α
β
η
Γ
η
γ
ε
−
Γ
α
γ
η
Γ
η
β
ε
)
R_{\delta\alpha\beta\gamma}=g_{\delta\varepsilon}(\partial_\gamma\Gamma_{\alpha\beta}^\varepsilon-\partial_\beta\Gamma_{\alpha\gamma}^\varepsilon+\Gamma_{\alpha\beta}^\eta\Gamma_{\eta\gamma}^\varepsilon-\Gamma_{\alpha\gamma}^\eta\Gamma_{\eta\beta}^\varepsilon)
Rδαβγ=gδε(∂γΓαβε−∂βΓαγε+ΓαβηΓηγε−ΓαγηΓηβε)的(反)对称性不依赖Gauss方程而总成立。
由Riemann记号的(反)对称性,不妨令指标 ( δ α β γ ) = ( 1212 ) (\delta\alpha\beta\gamma)=(1212) (δαβγ)=(1212)得到Gauss方程唯一的独立方程为
R 1212 = b 12 2 − b 11 b 22 = − b R_{1212}=b_{12}^2-b_{11}b_{22}=-b R1212=b122−b11b22=−b
定理应用
只要给定了一个曲面的第一基本形 I ( u , v ) = E d u 2 + 2 F d u d v + G d v 2 {I}(u,v)=Edu^2+2Fdudv+Gdv^2 I(u,v)=Edu2+2Fdudv+Gdv2,就可以算出Riemann记号 R 1212 R_{1212} R1212,从而可以算出Gauss曲率 K K K。特定情况下,还有正交标架下的Gauss绝妙定理,可以大幅简化计算量。