引言
在人工智能的浩瀚宇宙中,自然语言处理(NLP)如同探索人类语言星球的星际飞船,肩负着让计算机理解、处理人类语言的重任。而词嵌入(Word Embedding)作为 NLP 领域的基石技术,恰似飞船的核心引擎,将人类语言中抽象的词汇转化为计算机可处理的数字向量,为后续的语义理解、文本生成等任务提供动力。从简单却存在缺陷的独热编码,到谷歌提出的经典 Word2Vec 模型,每一次技术的迭代都在不断突破语言处理的边界。本文将深入剖析 NLP 中词嵌入的发展历程、核心原理与实践应用,带您领略自然语言数字化的奇妙之旅。
一、自然语言处理概述
(一)学科定义与范畴
自然语言处理(Natural Language Processing,NLP)是一门融合计算机科学、语言学、统计学等多学科的交叉领域,专注于研究如何让计算机理解、处理并生成人类自然语言。自然语言涵盖了书籍、文章、日常对话、语音等多种形式,是人类社会在长期发展过程中自然形成的交流工具 。
(二)核心任务与目标
NLP 的核心目标是实现人机之间高效的自然语言交互,具体任务包括但不限于:
- 文本分析:对文本进行分词、词性标注、命名实体识别、情感分析等,提取文本中的关键信息;
- 语音识别:将人类语音转换为计算机可处理的文本;
- 机器翻译:实现不同语言之间的自动翻译;
- 问答系统:根据用户提问,返回准确的答案;
- 文本生成:生成新闻报道、故事、诗歌等自然语言内容 。
二、词嵌入与 Word2Vec
(一)词嵌入的本质
词嵌入(Word Embedding)是一种将自然语言中的词汇映射为低维连续向量的技术。通过这种映射,每个词汇都被表示为一个稠密的向量,向量中的每个维度都蕴含了词汇的语义或语法信息。这些向量可以作为后续 NLP 模型(如神经网络)的输入,便

最低0.47元/天 解锁文章
729

被折叠的 条评论
为什么被折叠?



