变分推理ELBO详解

本文介绍了先验概率和后验概率的基本概念,重点阐述了如何通过ELBO(证据下界)近似后验概率,包括利用贝叶斯定理和KL散度计算。变分推理的核心是通过参数化的概率函数逼近真实后验,以处理复杂模型中的隐变量问题。
摘要由CSDN通过智能技术生成

目录

一. 基础知识

1. 先验概率&后验概率

二. ELBO详解

1. 求取后验概率的概率论基本方法(ELBO出现的原因)

通过贝叶斯定理求后验概率

求联合概率p(x,z)替代后验概率

二. 通过ELMO近似后验概率

1. 设一个z的先验概率分布函数来近似后验概率

 2.利用KL散度计算所设概率函数和后验概率的相似度

 3. 计算ELBO 

三. 结论


一. 基础知识

1. 先验概率&后验概率

x的先验概率分布:已知样本x的真实分布概率。可以理解为观测到的图片样本。

后验概率分布: 在真实样本概率分布的条件下的隐变量z的概率分布。可以理解为所观测到图片的类别等无法直接观测获得的隐藏变量。

二. ELBO详解

1. 求取后验概率的概率论基本方法(ELBO出现的原因)

通过贝叶斯定理求后验概率

但是因为p(x)作为边缘概率因为是联合概率积分且很难直接计算所以非常的棘手

求联合概率p(x,z)替代后验概率

        因为联合概率正比于后验概率(k = p(x), p(x)作为先验概率是常数)所以可以大致推导出后验概率的趋势。

但是由于实际上还是存在较大差异所以并不能用联合概率来替代后验概率

2. 通过ELMO近似后验概率

1. 设一个z的先验概率分布函数来近似后验概率

 2.利用KL散度计算所设概率函数和后验概率的相似度

 ELBO: 这里log p(x)是常数,也就是越接近到下界(elbo)的时候所设函数q越接近后验概率

 3. 计算ELBO 

        可以直接通过求导来计算出最大化ELBO因为最终参数只有\theta, 这里的例子较为简单,但是实际情况是无法计算出解析解的。

三. 结论

1. 变分推理(elbo)就是将一个可以计算可以参数化的概率函数去近似真实的后验概率

2.  推理可以理解为通过一个被观测对象来推理相关隐变量后验概率密度分布的隐变量图模型

3. 隐变量可以理解为观测变量的属性或者特征,可以通过隐变量来提升模型对可观测变量的理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值