【微积分】更简单的曲线积分!

青鸾杳,碧天云海音绝 

三连私信博主“GPT”,免费领取 GPT 4 授权码~

前言

        学习完微积分后回过头来看高等数学,发现高等数学中对于一些定理或定义的说明过于复杂以至于难以理解,用微积分来描述会更简洁。不可否认的是,高等数学确实相当严谨,严谨到让人望而却步。

        对于做题来说很难说有什么实质性的帮助,因为大多都是直接套用公式,仅仅是便于理解,或者说另一种做题的思路。

前导知识

  • 导数与微分

        导数描述的是函数在某一点处的瞬时变化率,即函数值随自变量变化的快慢。

        对于函数 y=f(x),导数定义为:

f'(x)=\lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}

        微分是函数在某一点处变化的线性近似,即当自变量有微小变化 dx 时,函数值的近似变化量 dy。其定义为:

dy = f'(x)dx

           显然求导也可以写成:

f'(x)=\frac{dy}{dx}

        这种写法能够更直观的看出是对谁求导,在链式求导(复合函数求导)时非常好用

        对于多元函数,微分与导数的关系比一元函数更复杂,但核心思想仍然是:导数是变化率,微分是线性近似。不过,多元函数的“导数”通常表现为梯度偏导数,而微分则推广为全微分方向导数

        梯度:

\nabla \cdot f = \nabla f =(\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2}\cdots)

        全微分:

\nabla \cdot f \cdot dx = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 \cdots

        其中 \nabla 表示向量微分算子,定义为:

\nabla = (\frac{\partial}{\partial x_1},\frac{\partial}{\partial x_2},\cdots)

  • 向量场

        向量场是指在一个空间区域(如平面、三维空间或更高维空间)中,每一点都赋予一个向量的映射。数学上可以表示为:

F:R^n \to R^n

        用于描述空间中向量的分布情况,在后续内容中会详细说明。

  • 旋度

        旋度(Curl)是一个​​向量微分算子​​,用于描述向量场在某一点的​​旋转特性​​。后面内容也会详细说明。

曲线积分

  • 第一类曲线积分

        第一类曲线积分又叫对弧长的曲线积分,表示 f 在曲线上的“加权弧长”。

        高数书上的定义为:

        设 L 为 xOy 面内一条光滑曲线弧,函数 f(x,y) 在 L 上有界,在 L 上任意插入一点列 M_1,M_2,\cdots,M_{n-1} 把 L 分成 n 个小段。设第 i 个小段的长度为 \Delta s_i,又 (\xi_i,\eta_i ) 为第 i 个小段上任意取定的一点,做乘积 f(\xi_i,\eta_i)\Delta s_i,(i=1,2,\cdots,n),并做和 \sum_{i=1}^nf(\xi_i,\eta_i)\Delta s_i。当各小弧段的长度最大值 \lambda \to0,这时和的极限总存在,且与曲线弧长 L 的分法与点 (\xi_i,\eta_i) 的取法无关,那么称此极限为函数  f(x,y) 在曲线弧 L 上对弧长的曲线积分,记为:

\int_L f(x,y)ds=\underset{\lambda =0}{lim}\sum_{i=1}^n f(\xi_i,\eta_i)\Delta s_i

        其中 f(x,y) 为被积函数,L 为积分弧段。

        很复杂是不是,更让人疑惑的是,为什么会出现 \xi_i,\eta_i,根本没有说明。

        高数严谨就严谨在这里,这里是利用了黎曼和与积分中值定理,从积分的定义上严格推导出第一类曲线积分, 后面对弧长积分的计算法也是如此,严谨且复杂。

        这里不详细展开,因为展开会很长。


         不妨换一个思路,从微分入手:

         考虑  f 是在空间中各点的“权值”,那么很自然的,“加权弧长”如下:

\int_L fds

        在平面中 ds 可以按、用勾股定理求出:

ds =\sqrt{(dx)^2+(dy)^2}

        事实上,对于直角坐标系中,弧长微元 ds 就是空间中各方向微元的二范数:

ds =||dx||_2,x=(x_1,x_2,\cdots)

||dx||_2 = \sqrt{(dx_1)^2+(dx_2)^2+ \cdots}

        对于三维或更高维都成立。

        考虑 x_i 是一个关于 t 的参数方程,有:

dx_1=dx_1(t)=x_1'(t)dt

dx_2=dx_2(t)=x_2'(t)dt

\cdots

        于是:

ds= \sqrt{(x_1'dt)^2+(x_2'dt)^2\cdots} =\sqrt{(x_1')^2+(x_2')^2\cdots}dt

        对于 R^n 空间显然成立。于是:

\int_L fds=\int_Lf(t)\sqrt{(x_1')^2+(x_2')^2\cdots}dt

        我们不需要黎曼和与积分中值定理,也能自然导出二维,三维或者更高维度的第一类曲线积分的定义与计算法,而且只需要寥寥无几的几行公式。

  • 第二类曲线积分

        研究某个变力沿某一路径做的功,我们通常会把这个变力分解到两两无关的方向上做积分,比如:

F(x,y)=P(x,y)i+Q(x,y)j

        其中 i,j 表示不同的方向,在平面中表示 x,y 方向的单位向量。

        需要注意的是,与第一类曲线积分不同,F(x,y) 不是一个 R^n \to R 的标量函数,而是一个 R^n \to R^n 的向量场,描述空间各点的向量值。

        换一个记法:

F(x,y)=\begin{pmatrix} P(x,y)\\Q(x,y) \end{pmatrix}

        而微元 dr 描述的是路径上某点的运动趋势,(物理上沿某个方向上有力的作用,才有功)也是一个向量,记作:

dr =\begin{pmatrix} dx\\ dy \end{pmatrix}

        于是第二类曲线积分可以写为:

\int_L F\cdot dr = \int_L P(x,y)dx+Q(x,y)dy

        对于 n 维显然成立:

F= (f_1,f_2,\cdots,f_n),dr=(dx_1,dx_2,\cdots,dx_n)

\int_L F\cdot dr = \int_L f_1dx_1+f_2dx_2 \cdots + f_ndx_n

        当向量 x 是一个关于 t 的参数方程时,有

dr =\begin{pmatrix} dx_1(t)\\ dx_2(t) \\ \vdots \\dx_n (t) \end{pmatrix} = \begin{pmatrix} x_1'dt\\ x_2'dt\\ \vdots\\ x_n'dt \end{pmatrix}

\int_LF\cdot dr = \int_L f_1(t) x_1' + f_2(t)x_2' + \cdots dt

        无需中值定理,我们又一次自然导出对于 n 维情况下第二类曲线积分的定义与计算法。

  • 两类曲线积分的联系 

        对于微元 dr,其方向角为:

(cos \theta_1,cos \theta_2,\cdots,cos \theta_n)=\frac{r'(t)}{||(r'(t)||_2}

        注意到,分母 ||r'(t)||_2 乘以一个 dt 刚好是弧长微元 ds

  事实上,对于直角坐标系中,弧长微元 ds 就是空间中各方向微元的二范数

         于是有:

\begin{pmatrix} cos \theta_1\\ cos \theta_2 \\ \vdots \\ cos\theta_n \end{pmatrix} \cdot ds = r'(t)dt=dr

\int_L (f_1,f_2,\cdots,f_n) \cdot\begin{pmatrix}cos \theta_1\\ cos \theta_2 \\ \vdots \\ cos\theta_n\end{pmatrix} ds=\int_L( f_1,f_2,\cdots,f_n)\begin{pmatrix} dx_1\\ dx_2 \\ \vdots \\ dx_n \end{pmatrix}

        再一次用非常简单的步骤推导出两类曲线积分如何相互转化。

        上述向量积分可能并不是很直观,我们考虑 xOy 平面,有:

\int_L f_1cos \theta_1 +f_2cos\theta_2 ds=\int_Lf_1dx_1+f_2dx_2

        就跟高数书上公式的形式一样了。

曲线积分相关公式 

  • 格林公式

         当一质点在向量场中沿某一闭合路径运动,想要求向量场对该质点做的功,有:

W=\oint_LF\cdot dr

        若 W > 0,说明质点沿该闭合路径逆时针运动,向量场 F 对质点做正功(假设在 xOy 平面上,默认右手系坐标)。若 W<0,质点沿该闭合路径逆时针运动,向量场 F 对质点做负功,若 W=0F 不做功。

        在数学上,称 W 为“环量”。

        对于一元函数,微积分是利用微小直线段逼近曲线,而二元函数,很自然地想到可以用微小矩形逼近曲面。

        对于这个逆时针路径 L=C_1+C_2+C_3+C_4,向量场 F=F(P,Q),其环量为:

C_1:\int_0^1 P(x,0)dx

C_2:\int_0^1 Q(1,y)dy

C_3:\int_1^0 P(x,1)dx

C_4:\int_1^0 Q(0,y)dy

        合并一下:

C_1+C_3 = \int_0^1 P(x,0)-P(x,1)dx=-\int_0^1\int_0^1 \frac{\partial P}{\partial y}dydx

C_2+C_4 = \int_0^1 Q(1,y)-Q(0,y)dx=\int_0^1\int_0^1 \frac{\partial Q}{\partial x}dxdy

        非常神奇地将线积分与面积分联系了起来。

        于是总环量为:

\int\int_D (\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy

        将这个区间 D 视为一个微元,相邻两个微元之间总有一正一反两个线积分相互抵消,称之为“环量的传递”,将区域内总环量传递到这个区域 D 的边界 \partial D 上.

         于是就得到了格林公式:

\int\int_D (\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy =\oint_{\partial D}Pdx+Qdy

  •  斯托克斯公式

        还记得前导知识中提到的向量微分算子吗?

        观察格林公式中 \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y},可以写成 \nabla \times F

\nabla \times F = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y}\\ P& Q \end{vmatrix}=\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}

        于是,格林公式可以写成:

\int\int_D \nabla \times F dxdy

        其中,dxdy 是一个面积微元,可以用 dS 表示,其法向量的方向为 z 轴方向。于是,格林公式又可以记为:

\int\int_D \nabla \times F \cdot dS

        假设区域 D 足够小,那么可以认为 \nabla \times F 描述的是在这个微小空间中,在某一向量场的作用下,环量变化的趋势,称之为“旋度

        “旋度”用于衡量一个向量场在某一点附近的旋转程度和方向。如果一个向量场描述的是某流体的速度场,那么旋度就描述了流体在该点的涡旋情况。旋度 \nabla \times F 大于零,表示在该向量场的作用下,环量有增大的趋势。从物理的角度来说,就是某一物体在这个平面上的某一点有逆时针自旋的趋势,并且认为这个场是“有旋”的。

        需要注意的是,存在旋度的向量场一般不能被某个标量函数来描述,如 y=xz=\sqrt{1-x^2-y^2} 此类函数描述,也意味着“有旋场”不存在全微分。

        举一个经典的“有旋场”,F_{x,y}=(-y,x)

        其旋度 \nabla \times F =\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} =1-(-1)=2,旋度大于0,在平面中绕圆心逆时针旋转。

考虑其微分 \nabla \cdot F = \frac{\partial }{\partial x} \cdot (-y)+\frac{\partial }{\partial y} \cdot x = 0,无论如何积分,我们永远也积不出原函数,只能得到一个不确定的常数。

        一般情况下,向量叉乘的结果仍是一个向量,但由于 F 是一个二元函数,旋度 \nabla \times F 退化为一个标量。那么,当 F 是一个三元函数时,会怎么样呢?

        于是就有了斯托克斯公式:

\int\int_D \nabla \times F\cdot dS=\int\int_D\begin{vmatrix} dydz & dxdz & dxdy\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ P &Q &R \end{vmatrix}

        其中 dS 表示空间中个基矢量对应的面积微元,如方向为 x 轴的法向量对应的面积微元为 dydz,方向为 z 轴的法向量对应为 dxdy

        计算一下行列式的值:

(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})dydz +(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})dxdz +(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy 

        可以看到,格林公式就是斯托克斯公式上 xOy 平面的分量。

        因此,对于三元函数 F,有:

\int\int_D \nabla \times F \cdot dS =\int _L F \cdot d r

\oint_L F \cdot dr = \oint_L Pdx +Qdy+Rdz

参考文献:

【1】普林斯顿微积分

【2】高等数学(第七版)

基于gcc的stm32环境搭建源码+文档说明.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的stm32环境搭建源码+文档说明.zip基于gcc的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值