微积分简史
1. 古代时期
1.1. Pythagoras时期 (约公元前 580 – 500年)
虽然人们对这位神秘人物知之甚少,但几乎可以肯定,数学就是从他开始的。Pythagoras领导着一个半宗教半数学的团体,他们对自己的大部分发现都秘而不宣。Pythagoras学派将他们的所有工作归功于他们的领袖,他们的座右铭是“万物皆数”。Pythagoras提出了数学证明的思想,以及他著名的Pythagoras定理——将直角三角形的边与其斜边联系起来。Pythagoras学派发现了非比数(irrational numbers),这对他们来说是一场灾难,因为非比数的存在违背了他们的信仰。然而,这一发现为后来的数学家带来了机会。
1.2. Euclid时期 (约公元前 300年)
关于Euclid的事实拼凑得很少,事实上并不是每个人都相信Euclid是一个人。大多数人认为Euclid是埃及一群数学家的领袖,他们撰写了《数学原理》(Elements),这本书整理了当时已知的所有数学知识。这 13 卷书涵盖的主题包括:平面几何、数论、非比数和圆锥的体积。近几个世纪以来,Euclid的许多假设都被证明是错误的,然而据说这些书对人类思想的影响比几乎任何其他作品都要大。Euclid比Plato年轻,但比Archimedes年长。
1.3. Archimedes时期 (约公元前 287 - 212年)
Archimedes是有史以来最伟大的三位数学家之一。尽管他因许多发明而闻名,包括“Archimedes螺丝”和他为希腊国王设计的许多战争机器,但他真正的热情在于纯数学。Archimedes求得了一个等比级数的和,这表明他理解极限的概念。除其他外,他还计算了圆周率;使用无限矩形的总和来求曲线下的面积;并求得了球体的体积和表面积。Archimedes被一名罗马士兵杀死,当时这名士兵走过尘土中画的一些圆圈,Archimedes对他很生气。
2. 先行时期(Descartes,Mersenne,Pierre Fermat)
Fermat白天是律师,晚上是数学家,他是一位天才,一生中从未试图发表过自己的发现。幸运的是,Fermat与Mersenne和其他在巴黎的数学家通信并透露了他的发现。虽然Newton和Leibniz被认为是微积分的发明者,但Fermat肯定也参与其中。Fermat发现了一种寻找最大值和最小值的方法,今天的学生会认出它是将导数设置为零。Fermat还发明了解析几何和现代数论。Fermat曾在一本书的空白处留下一张纸条,上面写着一个定理(Fermat大定理),但没有提供证明,至今没有数学家能够找到证明。”
2.1. Archimedes时期 (约公元前 287 - 212年)
3. 现代的早期
3.1. Isaac Newton(1642 - 1727年)的贡献
Newton实际上是在 1665 年至 1667 年间发现微积分的,当时他的大学因瘟疫爆发而关闭。当时牛顿只有 22 岁,他不愿意发表他的发现。与此同时,在德国,Leibniz独立发现了微积分,并且非常公开地分享他的发现。这导致了两位数学家之间的激烈争论,后来被称为“大愠怒”。今天众所周知,两人都是独立发现微积分的,Leibniz比牛顿晚了大约 8 年。Newton以其物理学工作而闻名,尤其是他的三大运动定律。”
3.2. Gottfried Wilhelm Leibniz(1646 - 1716年)的贡献
尽管Leibniz被认为是Newton之后发现微积分的人,但他被认为是现代欧洲数学的真正创始人。他不仅是一位伟大的数学家,还是一位哲学家、科学家、逻辑学家、外交家和律师。Leibniz因引入至今仍在微积分中使用的符号而闻名,例如“dy/dx”和积分符号(∫)。甚至全世界使用的“=”符号也归功于他。”
3.3. Euler(1707-1783年)的贡献
很难相信,一个有 13 个孩子的男人,在生命的最后 17 年失明,一生中平均每年能出版约 800 页的作品。Euler对纯数学和应用数学的每个分支都做出了贡献,甚至发现了一些新分支。据说,1748 年以后印刷的任何初等或高等微积分教材基本上都是Euler作品的副本或副本的副本。多亏了Euler,我们才有了 π 和 e 的符号。他还对无穷级数进行了广泛的研究,并因求出某个特定级数的和而令他的老师Johann Bernoulli感到惊讶。在作家的帮助下,Euler在失明后发表了更多作品。
3.4. Fourier(1768-1830年)的贡献
Fourier是一位法国数学家,他父亲希望他成为牧师,而他真正感兴趣的是数学。14 岁时,数学胜出。他参与了法国大革命的善后工作,甚至成为拿破仑的熟人。有一次,他被关进监狱,注定要上断头台,但最终他被释放了。Fourier因他的名字命名的级数而闻名。他还扩展了函数的定义。Riemann使用Fourier级数来定义定积分,该级数也用于物理学的许多其他应用。
4. 现代的后期
4.1. Johann Carl Friedrich Gauss(1777-1885年)的贡献
Gauss可能是有史以来最伟大的数学家,他的才华从小就被他在德国的小学老师所发现。15 岁时,Gauss进入布伦瑞克卡罗来纳学院(Brunswick Collegium Carolinum),在那里他独立发现了许多数学定律和定理。Gauss在许多领域都做出了贡献,包括数论、微分方程、圆锥曲线和微分几何。尽管经历了个人悲剧,但他的工作从未受到影响。一年之内,他的父亲、妻子和儿子都去世了。
4.2. Augustin Louis Cauchy(1789-1857年)的贡献
尽管Cauchy才华横溢,但他的大多数同时代人都不喜欢他,甚至有人形容他是个心胸狭隘的偏执狂。然而,他确实为微积分做出了一些重大贡献,包括首次证明Taylor级数的收敛性,以及对极限、导数和积分的严格处理。Cauchy在生产力方面仅次于Euler,他的发现写满了 27 卷。
4.3. Liouville,Hermite,Kelvin (William Thomson)的贡献
4.4. Johann Peter Gustav Lejeune Dirichlet(1805-1859年)的贡献
Dirichlet的偶像是Gauss,据说他走到哪里都带着Gauss的《算术研究》(Disquisitiones arithmeticae)。Dirichlet最出名的是他在数论和分析方面的工作。1829 年,他给出了一个至今仍在使用的函数定义。他说,当 x 在给定区间内的每个值都有唯一的 y 值时,y 就是 x 的函数。晚年,Dirichlet成为Gauss的朋友,并接替他成为哥廷根大学的教授。
(注:Dirichlet (1805~1859)德国数学家。)
4.5. Bernhard Riemann(1826-1866年)的贡献
Riemann从小就对数学表现出兴趣,但是为了取悦父亲,他刚上大学时就读于神学系。然而不久之后,在父亲的允许下,他转到哥廷根大学学习数学,Gauss是那里的数学系主任。一年后,Riemann离开学校,前往柏林上学,因为Riemann难以接近,尤其是对低年级一年级学生来说,在柏林,他被Dirichlet张开双臂接纳。几年后,Riemann回到哥廷根,以一场非常著名的几何讲座给Gauss留下了深刻的印象。他最终成为这所大学的教授。Riemann对积分的定义至今仍在几乎所有教科书中使用。Riemann因肺结核去世,年仅 39 岁,因此发表了相对较少(但很重要)的著作。
5. Riemann积分(仅积分,只考虑可积性)
5.1. 用Riemann积分条件描述微积分基本定理
Newton和Leibniz当时想求出一些曲线下的面积,两人的大致思想是将面积分割成无数个小矩形,然后求和,并把这个称为积分(把分割的部分和累加起来)。但是由于这个时期几乎没有什么微积分的理论基础,所以他俩考虑的更多是一些几何的、级数的技巧,且十分不严格。可以看出,Newton和Leibniz积分的思想就是现在的定积分(definite integral),但是十分不严格。
将二人在微积分的成果结合在一起,就得到了Newton-Leibniz公式,即微积分基本定理,揭示了定积分(限定区间上的积分)与被积函数的原函数或者不定积分之间的关系。微积分基本定理大致是指函数 f 的积分的导数等于 f 。但应注意,积分是独立于微分的。
微积分基本定理(Fundamental theorem of calculus)( Newton-Leibniz公式):若函数 f 连续,F(x)是Riemann积分 , 则 。
注意不要混淆积分基本定理和Riemann积分:
(1) 前面我们提到,积分是独立于微分的,可积不一定可微。Riemann积分是定积分,因此它得出一个数,Riemann积分是一个几何概念(面积)。
(2) Newton-Leibniz积分是一个代数概念,揭示了定积分(限定区间上的积分)与被积函数的原函数或者不定积分之间的关系,但在积分方面,就是现在的定积分思想。Newton-Leibniz公式得出一组函数(反导数),这些积分适用于不同的函数集。
(3)在积分方面,Riemann积分和Newton-Leibniz积分都可以应用于“好”函数;在另一方面,跳跃函数是Riemann可积的,但它没有反导数(即不连续,不符合Newton-Leibniz公式的条件)。
(4) 在描述 Newton-Leibniz 公式的积分条件的时候,利用了完善后的Riemann积分条件。
5.2. Riemann积分
Riemann积分是根据区间标记划分的Riemann函数和来定义的。实线上闭区间 [a, b] 的标记划分是有限序列
。
这将区间 [a, b] 划分为 n 个子区间 ,每个子区间都用 i 进行索引,每个子区间都“标记”有一个特定的点 。函数 f 关于这种标记分割的 Riemann 和 定义为
;
因此,和的每个项都是一个矩形的面积,该矩形的高度等于给定子区间选定点处的函数值,宽度与子区间的宽度相同, 。这种标记分区的网格是分区形成的最大子区间的宽度, 。函数 f 在区间 [a, b] 上的Riemann积分等于 S 的条件为:
对于所有 ε > 0 ,都存在一个 δ > 0使得,对于任意标记分割的区间 [a, b],只要其网格小于 δ ,就有
。
当选取的标签为函数在各个区间的最大值(分别为最小值)时,Riemann和就变为Darboux和的上限值(相应地,有下限值),这表明Riemann积分与Darboux积分之间存在着密切的联系。
但Riemann积分的缺点也很明显:
(1) 可积性对连续性要求过高;
(2) 积分与极限顺序不可交换;
(3) Riemann可积函数构成的空间不完备。
6. Lebesgue[ləbέ:g]积分(仅积分,只考虑可积性)
无论是在理论还是在应用中,能够通过积分达到极限往往是令人感兴趣的。例如,经常可以构造一个函数序列,以适当的方式近似问题的解。那么解函数的积分应该是近似积分的极限。然而,许多可以作为极限获得的函数不是Riemann可积的,因此这种极限定理不适用于Riemann积分。因此,有一个允许更广泛的函数类进行积分的积分定义非常重要。
这种积分就是Lebesgue积分,它利用以下事实来扩大可积函数类:如果函数的值在定义域上重新排列,函数的积分应该保持不变。因此,Henri Lebesgue引入了以他的名字命名的积分,并在给Paul Montel的信中解释了这种积分:
“我必须支付口袋里收集到的一笔钱。我从口袋里掏出钞票和硬币,按照找到的顺序交给债权人,直到达到总金额。这就是Riemann。但我可以采取不同的做法。在掏出口袋里的所有钱后,我按照相同的价值对钞票和硬币进行排序,然后逐一将几堆钱付给债权人。这就是我的积分。”。
正如Folland所说,“为了计算 f 的Riemann积分,需要将定义域 [a, b] 划分为子区间”,而在Lebesgue积分中,“实际上是在划分 f 的范围(range)”。因此,Lebesgue积分的定义始于测度 μ。在最简单的情况下,区间 A = [a, b] 的Lebesgue测度μ(A) 是其宽度 b - a,因此当两者存在时,Lebesgue积分与(真) Riemann积分一致。在更复杂的情况下,被测量的集合可能高度分散,没有连续性,与区间也不相似。
使用“划分 f 的范围”的哲学,非负函数 f : ℝ →ℝ 的积分应该是 y = t 和 y = t + dt 之间的一条细水平带之间的面积在 t 上的总和。这个面积正是 μ { x : f (x) > t } dt ,令 。则 f 的Lebesgue积分定义为
,
其中,右边的这个积分是普通的广义Riemann积分( 是严格递降的正函数,因此,具有一个定义明确的广义函数),对于一类合适的函数(可测函数),这定义了Lebesgue积分。
如果一般可测函数 f 的图像与 x 轴之间区域的面积绝对值之和是有限的,则该函数是Lebesgue可积的:
。
在这种情况下,积分就像 Riemann 积分的情况一样,是 x 轴上方面积与 x 轴下方面积之间的差:
,
其中,
,
。
(注:Henri Léon Lebesgue(1875年6月28日-1941年7月26日),法国著名数学家。)
7. 其它积分(仅积分,只考虑可积性)
虽然Riemann积分和Lebesgue积分是积分最广泛使用的定义,但还存在许多其他定义,包括:
7.1. Darboux[darbú:] 积分
Darboux积分由Darboux和(受制Riemann和)定义,但等价于Riemann积分。当且仅当函数是Riemann可积函数时,该函数才是Darboux可积函数。Darboux积分的优点是比Riemann积分更容易定义。(注:Jean Gaston Darboux (1842年8月14日-1917年2月23日),是法国数学家,他对数学分析(积分,偏微分方程)和微分几何(曲线和曲面的研究)作出了重要贡献。)
7.2. Riemann–Stieltjes [stí:ltjəs] 积分
Riemann–Stieltjes [stí:ltjəs]积分是对Riemann积分的一个扩展,它是针对函数而不是变量进行积分。(注:Stieltjes(1856年12月29日-1894年12月31日)是荷兰数学家。)
7.3. Lebesgue–Stieltjes [ləbέ:g-stí:ltjəs] 积分
Lebesgue–Stieltjes积分由Johann Radon进一步发展,推广了Riemann–Stieltjes积分和Lebesgue积分。
7.4. Daniell [dǽjəl] 积分
Daniell积分包含了Lebesgue积分和Lebesgue–Stieltjes积分,而不依赖于测度。
(注:Percy John Daniell (1889 年 1 月 9 日-1946 年 5 月 25 日)是英国数学家。)
7.5. Haar [ha:] 积分
Haar积分用于局部紧拓扑群的积分,由Alfréd Haar于 1933 年提出。
(注:Alfréd Haar(1885 年 10 月 11 日-1933 年 3 月 16 日),匈牙利数学家。)
7.6. Henstock–Kurzweil [ha:] 积分
Henstock–Kurzweil积分由Arnaud Denjoy、Oskar Perron 和Jaroslav Kurzweil(作为规范积分,它是最优雅的)分别定义,并由Ralph Henstock发展。
(注:Ralph Henstock (1923 年 6 月 2 日 - 2007 年 1 月 17 日) 是一位英国数学家和作家。Jaroslav Kurzweil(1926 年 5 月 7 日- 2022 年 3 月 17 日)是捷克数学家。)
7.7. Itô积分和Stratonovich积分
Itô 积分和 Stratonovich 积分,它们定义了关于半鞅(semimartingales)(例如布朗运动)的积分。
(注:Kiyoshi Itô (伊藤清)( 1915 年 9 月 7 日-2008 年 11 月 10 日)是日本数学家。Ruslan Leont'evich Stratonovich (1930 年 5 月 31 日—)是俄罗斯物理学家、工程师和概率学家,也是随机微分方程理论的创始人之一。)
7.8. Young积分
Young积分是关于某些无界变差函数的一种Riemann–Stieltjes积分。
(注: Laurence Chisholm Young(1905 年 7 月 14 日 - 2000 年 12 月 24 日)是一位英国数学家,因其对测度论、变分法、最优控制论和势论的贡献而闻名。)
7.9. 粗糙路径积分(The rough path integral)
粗糙路径积分是为配备有一些额外的“粗糙路径”结构的函数定义的,并且针对半鞅和分数布朗运动等过程推广了随机积分。
7.10. Choquet积分
Choquet积分由法国数学家Gustave Choquet于1953年创建的次加法(subadditive)或超加法(superadditive)积分。
7.11. Bochner[bɔ́knə] 积分
Bochner 积分是Lebesgue积分的扩展,扩展到更一般的函数类,即定义域为 Banach 空间的函数。
(注:。Salomon Bochner (1899 年 8 月 20 日 - 1982 年 5 月 2 日) 是一位出生于奥匈帝国的数学家,以数学分析、概率论和微分几何方面的工作而闻名。)