微积分简史

微积分简史

1.  古代时期

1.1.  Pythagoras时期 (约公元前 580 – 500年)

虽然人们对这位神秘人物知之甚少,但几乎可以肯定,数学就是从他开始的。Pythagoras领导着一个半宗教半数学的团体,他们对自己的大部分发现都秘而不宣。Pythagoras学派将他们的所有工作归功于他们的领袖,他们的座右铭是“万物皆数”。Pythagoras提出了数学证明的思想,以及他著名的Pythagoras定理——将直角三角形的边与其斜边联系起来。Pythagoras学派发现了非比数(irrational numbers),这对他们来说是一场灾难,因为非比数的存在违背了他们的信仰。然而,这一发现为后来的数学家带来了机会。

1.2.  Euclid时期 (约公元前 300年)

关于Euclid的事实拼凑得很少,事实上并不是每个人都相信Euclid是一个人。大多数人认为Euclid是埃及一群数学家的领袖,他们撰写了《数学原理》(Elements),这本书整理了当时已知的所有数学知识。这 13 卷书涵盖的主题包括:平面几何、数论、非比数和圆锥的体积。近几个世纪以来,Euclid的许多假设都被证明是错误的,然而据说这些书对人类思想的影响比几乎任何其他作品都要大。Euclid比Plato年轻,但比Archimedes年长。

1.3.  Archimedes时期 (约公元前 287 - 212年)

Archimedes是有史以来最伟大的三位数学家之一。尽管他因许多发明而闻名,包括“Archimedes螺丝”和他为希腊国王设计的许多战争机器,但他真正的热情在于纯数学。Archimedes求得了一个等比级数的和,这表明他理解极限的概念。除其他外,他还计算了圆周率;使用无限矩形的总和来求曲线下的面积;并求得了球体的体积和表面积。Archimedes被一名罗马士兵杀死,当时这名士兵走过尘土中画的一些圆圈,Archimedes对他很生气。

2.  先行时期(Descartes,Mersenne,Pierre Fermat)

Fermat白天是律师,晚上是数学家,他是一位天才,一生中从未试图发表过自己的发现。幸运的是,Fermat与Mersenne和其他在巴黎的数学家通信并透露了他的发现。虽然NewtonLeibniz被认为是微积分的发明者,但Fermat肯定也参与其中。Fermat发现了一种寻找最大值和最小值的方法,今天的学生会认出它是将导数设置为零。Fermat还发明了解析几何和现代数论。Fermat曾在一本书的空白处留下一张纸条,上面写着一个定理(Fermat大定理),但没有提供证明,至今没有数学家能够找到证明。”

2.1.  Archimedes时期 (约公元前 287 - 212年)

3.  现代的早期

3.1.  Isaac Newton(1642 - 1727年)的贡献

Newton实际上是在 1665 年至 1667 年间发现微积分的,当时他的大学因瘟疫爆发而关闭。当时牛顿只有 22 岁,他不愿意发表他的发现。与此同时,在德国,Leibniz独立发现了微积分,并且非常公开地分享他的发现。这导致了两位数学家之间的激烈争论,后来被称为“大愠怒”。今天众所周知,两人都是独立发现微积分的,Leibniz比牛顿晚了大约 8 年。Newton以其物理学工作而闻名,尤其是他的三大运动定律。”

3.2.  Gottfried Wilhelm Leibniz(1646 - 1716年)的贡献

尽管Leibniz被认为是Newton之后发现微积分的人,但他被认为是现代欧洲数学的真正创始人。他不仅是一位伟大的数学家,还是一位哲学家、科学家、逻辑学家、外交家和律师。Leibniz因引入至今仍在微积分中使用的符号而闻名,例如“dy/dx”和积分符号(∫)。甚至全世界使用的“=”符号也归​​功于他。”

3.3.  Euler(1707-1783年)的贡献

很难相信,一个有 13 个孩子的男人,在生命的最后 17 年失明,一生中平均每年能出版约 800 页的作品。Euler对纯数学和应用数学的每个分支都做出了贡献,甚至发现了一些新分支。据说,1748 年以后印刷的任何初等或高等微积分教材基本上都是Euler作品的副本或副本的副本。多亏了Euler,我们才有了 πe 的符号。他还对无穷级数进行了广泛的研究,并因求出某个特定级数的和而令他的老师Johann Bernoulli感到惊讶。在作家的帮助下,Euler在失明后发表了更多作品。

3.4.  Fourier(1768-1830年)的贡献

Fourier是一位法国数学家,他父亲希望他成为牧师,而他真正感兴趣的是数学。14 岁时,数学胜出。他参与了法国大革命的善后工作,甚至成为拿破仑的熟人。有一次,他被关进监狱,注定要上断头台,但最终他被释放了。Fourier因他的名字命名的级数而闻名他还扩展了函数的定义。Riemann使用Fourier级数来定义定积分,该级数也用于物理学的许多其他应用。

4.  现代的后期

4.1.  Johann Carl Friedrich Gauss(1777-1885年)的贡献

Gauss可能是有史以来最伟大的数学家,他的才华从小就被他在德国的小学老师所发现。15 岁时,Gauss进入布伦瑞克卡罗来纳学院(Brunswick Collegium Carolinum),在那里他独立发现了许多数学定律和定理。Gauss在许多领域都做出了贡献,包括数论、微分方程、圆锥曲线和微分几何。尽管经历了个人悲剧,但他的工作从未受到影响。一年之内,他的父亲、妻子和儿子都去世了。

4.2.  Augustin Louis Cauchy(1789-1857年)的贡献

    尽管Cauchy才华横溢,但他的大多数同时代人都不喜欢他,甚至有人形容他是个心胸狭隘的偏执狂。然而,他确实为微积分做出了一些重大贡献,包括首次证明Taylor级数的收敛性,以及对极限、导数和积分的严格处理。Cauchy在生产力方面仅次于Euler,他的发现写满了 27 卷

4.3.  Liouville,Hermite,Kelvin (William Thomson)的贡献

4.4.  Johann Peter Gustav Lejeune Dirichlet(1805-1859年)的贡献

Dirichlet的偶像是Gauss,据说他走到哪里都带着Gauss的《算术研究》(Disquisitiones arithmeticae)。Dirichlet最出名的是他在数论和分析方面的工作。1829 年,他给出了一个至今仍在使用的函数定义。他说,当 x 在给定区间内的每个值都有唯一的 y 值时,y 就是 x 的函数。晚年,Dirichlet成为Gauss的朋友,并接替他成为哥廷根大学的教授。

(注:Dirichlet (1805~1859)德国数学家。)

4.5.  Bernhard Riemann(1826-1866年)的贡献

Riemann从小就对数学表现出兴趣,但是为了取悦父亲,他刚上大学时就读于神学系。然而不久之后,在父亲的允许下,他转到哥廷根大学学习数学,Gauss是那里的数学系主任。一年后,Riemann离开学校,前往柏林上学,因为Riemann难以接近,尤其是对低年级一年级学生来说,在柏林,他被Dirichlet张开双臂接纳。几年后,Riemann回到哥廷根,以一场非常著名的几何讲座给Gauss留下了深刻的印象。他最终成为这所大学的教授。Riemann对积分的定义至今仍在几乎所有教科书中使用。Riemann因肺结核去世,年仅 39 岁,因此发表了相对较少(但很重要)的著作。

   

5.  Riemann积分(仅积分,只考虑可积性)

5.1.  用Riemann积分条件描述微积分基本定理

Newton和Leibniz当时想求出一些曲线下的面积,两人的大致思想是将面积分割成无数个小矩形,然后求和,并把这个称为积分(把分割的部分和累加起来)。但是由于这个时期几乎没有什么微积分的理论基础,所以他俩考虑的更多是一些几何的、级数的技巧,且十分不严格。可以看出,NewtonLeibniz积分的思想就是现在的定积分(definite integral),但是十分不严格。

         将二人在微积分的成果结合在一起,就得到了Newton-Leibniz公式,即微积分基本定理,揭示了定积分(限定区间上的积分)与被积函数的原函数或者不定积分之间的关系。微积分基本定理大致是指函数 f 的积分的导数等于 f 但应注意,积分是独立于微分的。

    微积分基本定理(Fundamental theorem of calculus)( Newton-Leibniz公式):若函数 f 连续,F(x)是Riemann积分 \int_{a}^{x}{f(t)dt}   F^{'}(x)=f(x) 。

注意不要混淆积分基本定理和Riemann积分:

(1) 前面我们提到积分是独立于微分的,可积不一定可微。Riemann积分是定积分,因此它得出一个数,Riemann积分是一个几何概念(面积)。

(2) Newton-Leibniz积分是一个代数概念,揭示了定积分(限定区间上的积分)与被积函数的原函数或者不定积分之间的关系,但在积分方面,就是现在的定积分思想。Newton-Leibniz公式得出一组函数(反导数),这些积分适用于不同的函数集。

(3)在积分方面,Riemann积分和Newton-Leibniz积分都可以应用于“好”函数;在另一方面,跳跃函数是Riemann可积的,但它没有反导数(即不连续,不符合Newton-Leibniz公式的条件)。

(4) 在描述 Newton-Leibniz 公式的积分条件的时候,利用了完善后的Riemann积分条件。

5.2.  Riemann积分

Riemann积分是根据区间标记划分的Riemann函数和来定义的。实线上闭区间 [a, b] 的标记划分是有限序列

a = x_{0} \le t_{1} \le x_{1} \le t_{2} \le x_{2} \le ... \le x_{n-1} \le t_{n} \le x_{n} = b 。

这将区间 [a, b] 划分为 n 个子区间 [x_{i-1}, x_{i}] ,每个子区间都用 i 进行索引,每个子区间都“标记”有一个特定的点 t_{i} \in [x_{i-1}, x_{i}] 。函数 f 关于这种标记分割的 Riemann 和 定义为

\displaystyle \sum_{i=0}^{n}f(x_{i})\Delta_{i} ;

因此,和的每个项都是一个矩形的面积,该矩形的高度等于给定子区间选定点处的函数值,宽度与子区间的宽度相同,\Delta_{i} = x_{i} - x_{i-1} 。这种标记分区的网格是分区形成的最大子区间的宽度,\max_{i=1...n}\Delta_{i}  。函数 f 在区间 [a, b] 上的Riemann积分等于 S 的条件为:

对于所有 ε > 0 ,都存在一个 δ > 0使得,对于任意标记分割的区间 [a, b],只要其网格小于 δ ,就有

\bigg |S-\displaystyle \sum_{i=0}^{n}f(x_{i})\Delta_{i} \bigg | < \varepsilon 。

当选取的标签为函数在各个区间的最大值(分别为最小值)时,Riemann和就变为Darboux和的上限值(相应地,有下限值),这表明Riemann积分与Darboux积分之间存在着密切的联系。

但Riemann积分的缺点也很明显:

(1) 可积性对连续性要求过高;

(2) 积分与极限顺序不可交换;

(3) Riemann可积函数构成的空间不完备。

6.  Lebesgue[ləbέ:g]积分(仅积分,只考虑可积性)

无论是在理论还是在应用中,能够通过积分达到极限往往是令人感兴趣的例如,经常可以构造一个函数序列,以适当的方式近似问题的解。那么解函数的积分应该是近似积分的极限。然而,许多可以作为极限获得的函数不是Riemann可积的,因此这种极限定理不适用于Riemann积分。因此,有一个允许更广泛的函数类进行积分的积分定义非常重要。

这种积分就是Lebesgue积分,它利用以下事实来扩大可积函数类如果函数的值在定义域上重新排列,函数的积分应该保持不变。因此,Henri Lebesgue引入了以他的名字命名的积分,并在给Paul Montel的信中解释了这种积分:

我必须支付口袋里收集到的一笔钱。我从口袋里掏出钞票和硬币,按照找到的顺序交给债权人,直到达到总金额。这就是Riemann。但我可以采取不同的做法。在掏出口袋里的所有钱后,我按照相同的价值对钞票和硬币进行排序,然后逐一将几堆钱付给债权人。这就是我的积分。”。

正如Folland所说,“为了计算 f 的Riemann积分,需要将定义域 [a, b] 划分为子区间”,而Lebesgue积分中,“实际上是在划分 f 的范围(range)”。因此,Lebesgue积分的定义始于测度 μ。在最简单的情况下,区间 A = [a, b] 的Lebesgue测度μ(A) 是其宽度 b - a,因此当两者存在时,Lebesgue积分与(真) Riemann积分一致。在更复杂的情况下,被测量的集合可能高度分散,没有连续性,与区间也不相似

使用“划分 f 的范围”的哲学,非负函数 f : ℝ →ℝ 的积分应该是 y = ty = t + dt 之间的一条细水平带之间的面积在 t 上的总和。这个面积正是  μ x : f (x) > } dt ,令 f^{*}(t) = \mu \{ x : f (x) > t\} dt 。则 f 的Lebesgue积分定义为

\displaystyle \int f = \int_{0}^{\infty}f^{*} (t)dt  ,

其中,右边的这个积分是普通的广义Riemann积分( f^{*} 是严格递降的正函数,因此,具有一个定义明确的广义函数),对于一类合适的函数(可测函数),这定义了Lebesgue积分。

如果一般可测函数 f 的图像与 x 轴之间区域的面积绝对值之和是有限的,则该函数是Lebesgue可积的:

\displaystyle \int_{E} {|f|}d\mu<+\infty 。

在这种情况下,积分就像 Riemann 积分的情况一样,是 x 轴上方面积与 x 轴下方面积之间的差:

\displaystyle \int_{E} {f}d\mu = \int_{E} {f^{+}}d\mu- \int_{E} {f^{-}}d\mu ,

其中,

\displaystyle f^{+}(x) = \max\{ f(x),0\} = \left \{ \begin{array}{lr} f(x)(if \:\: f(x)>0) \\ \\ 0(otherwise) \end{array} \right .,

\displaystyle f^{-}(x) = \max\{ -f(x),0\} = \left \{ \begin{array}{lr} -f(x)(if \:\: f(x)<0) \\ \\ 0(otherwise) \end{array} \right .

(注:Henri Léon Lebesgue(1875年6月28日-1941年7月26日),法国著名数学家。)

7.  其它积分(仅积分,只考虑可积性)

    虽然Riemann积分和Lebesgue积分是积分最广泛使用的定义,但还存在许多其他定义,包括:

7.1.  Darboux[darbú:] 积分

    Darboux积分由Darboux和(受制Riemann和)定义,但等价于Riemann积分。当且仅当函数是Riemann可积函数时,该函数才是Darboux可积函数。Darboux积分的优点是比Riemann积分更容易定义。(注:Jean Gaston Darboux (1842年8月14日-1917年2月23日),是法国数学家,他对数学分析(积分,偏微分方程)和微分几何(曲线和曲面的研究)作出了重要贡献。)

7.2.  Riemann–Stieltjes [stí:ltjəs] 积分

Riemann–Stieltjes [stí:ltjəs]积分是对Riemann积分的一个扩展,它是针对函数而不是变量进行积分。(注:Stieltjes(1856年12月29日-1894年12月31日)是荷兰数学家。)

7.3.  Lebesgue–Stieltjes [ləbέ:g-stí:ltjəs] 积分

Lebesgue–Stieltjes积分由Johann Radon进一步发展,推广了Riemann–Stieltjes积分和Lebesgue积分。

7.4.  Daniell [dǽjəl] 积分

Daniell积分包含了Lebesgue积分和Lebesgue–Stieltjes积分,而不依赖于测度

(注:Percy John Daniell (1889 年 1 月 9 日-1946 年 5 月 25 日)是英国数学家。)

7.5.  Haar [ha:] 积分

Haar积分用于局部紧拓扑群的积分,由Alfréd Haar于 1933 年提出。

(注:Alfréd Haar(1885 年 10 月 11 日-1933 年 3 月 16 日),匈牙利数学家。)

7.6.  Henstock–Kurzweil [ha:] 积分

Henstock–Kurzweil积分由Arnaud Denjoy、Oskar Perron 和Jaroslav Kurzweil(作为规范积分,它是最优雅的)分别定义,并由Ralph Henstock发展。

(注:Ralph Henstock (1923 年 6 月 2 日 - 2007 年 1 月 17 日) 是一位英国数学家和作家。Jaroslav Kurzweil(1926 年 5 月 7 日- 2022 年 3 月 17 日)是捷克数学家。)

7.7.  Itô积分和Stratonovich积分

Itô 积分和 Stratonovich 积分,它们定义了关于半鞅(semimartingales)(例如布朗运动)的积分。

(注:Kiyoshi Itô (伊藤清)( 1915 年 9 月 7 日-2008 年 11 月 10 日)是日本数学家。Ruslan Leont'evich Stratonovich (1930 年 5 月 31 日—)是俄罗斯物理学家、工程师和概率学家,也是随机微分方程理论的创始人之一。)

7.8.  Young积分

Young积分是关于某些无界变差函数的一种Riemann–Stieltjes积分。

(注: Laurence Chisholm Young(1905 年 7 月 14 日 - 2000 年 12 月 24 日)是一位英国数学家,因其对测度论、变分法、最优控制论和势论的贡献而闻名。)

7.9.  粗糙路径积分(The rough path integral)

粗糙路径积分是为配备有一些额外的“粗糙路径”结构的函数定义的,并且针对半鞅和分数布朗运动等过程推广了随机积分。

7.10.  Choquet积分

    Choquet积分由法国数学家Gustave Choquet于1953年创建的次加法(subadditive)或超加法(superadditive)积分。

7.11.  Bochner[bɔ́knə] 积分

    Bochner 积分是Lebesgue积分的扩展,扩展到更一般的函数类,即定义域为 Banach 空间的函数。

(注:。Salomon Bochner (1899 年 8 月 20 日 - 1982 年 5 月 2 日) 是一位出生于奥匈帝国的数学家,以数学分析、概率论和微分几何方面的工作而闻名。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值