【Intel校企合作课程】基于ResNet18实现猫狗大战

1作业简介

1.1问题描述

       在问题中,你将面一个典的机器学分类挑——猫狗大。你的任是建立一个分类模型,能够准确地区分像中是猫是狗

1.2预期解决方案

        你的目标是通过训练一个机器学习模型,使其在给定一张图像时能够准确地预测图像中是猫还是狗。模型应该能够推广到未见过的图像,并在测试数据上表现良好。期待您将其部署到模的生产环境中——里推理时间和二分类准确度(F1分数)将作为评分的主要依据

1.3数据集

链接:https://pan.baidu.com/s/1vyJUrX9iA0Z-L_Xxtx3e1g 
提取码:1227 

1.4图像显示

2数据预处理

        本数据集经划分后分成了两部分,train训练集,test测试集

2.1数据集结构

                                            

        train训练集和test测试集下都有有cats和dogs文件夹,训练时文件夹的名字将会作为标签,即在cats文件夹里的图片标签是猫,dogs文件夹里的图片标签是狗。一开始我并没有进行划分子文件夹,因为每张图片都有含有cat或者dog,就直接使用图片名作为标签,但是这样放到模型去训练的时候需要耗费大量的时间,训练时间远比分子文件夹要多。

        cats子文件夹下的部分图片(dogs子文件夹类似)

 2.2统计训练集和测试集的大小

def count_images_in_folder(folder_path):
    cat_count = len([file for file in os.listdir(os.path.join(folder_path, 'cats')) if file.endswith('.jpg')])
    dog_count = len([file for file in os.listdir(os.path.join(folder_path, 'dogs')) if file.endswith('.jpg')])
    return cat_count, dog_count

train_folder_path = '../Cats vs Dogs/train'  # 训练集文件路径
test_folder_path = '../Cats vs Dogs/test'    # 测试集文件路径

train_cat_count, train_dog_count = count_images_in_folder(train_folder_path)
test_cat_count, test_dog_count = count_images_in_folder(test_folder_path)

print(f"Train set: Cats - {train_cat_count} images, Dogs - {train_dog_count} images")
print(f"Test set: Cats - {test_cat_count} images, Dogs - {test_dog_count} images")

 运行结果

         训练集共25000张图片,其中猫的图片有12500张,狗的图片有12500张

         测试集共1000张图片,其中猫的图片有500张,狗的图片有500张

2.3查看测试集部分图片

from PIL import Image
import os
import random
import matplotlib.pyplot as plt

def show_random_images(folder_path, num_images=3):
    cat_files = [file for file in os.listdir(os.path.join(folder_path, 'cats')) if file.endswith('.jpg')]
    dog_files = [file for file in os.listdir(os.path.join(folder_path, 'dogs')) if file.endswith('.jpg')]
    
    random_cat_files = random.sample(cat_files, num_images)
    random_dog_files = random.sample(dog_files, num_images)

    for cat_file, dog_file in zip(random_cat_files, random_dog_files):
        cat_path = os.path.join(folder_path, 'cats', cat_file)
        dog_path = os.path.join(folder_path, 'dogs', dog_file)

        cat_image = Image.open(cat_path)
        dog_image = Image.open(dog_path)

        # Display the images
        plt.figure(figsize=(8, 4))
        plt.subplot(1, 2, 1)
        plt.imshow(cat_image)
        plt.title('Cat')

        plt.subplot(1, 2, 2)
        plt.imshow(dog_image)
        plt.title('Dog')

        plt.show()

train_folder_path = '../Cats vs Dogs/train'
show_random_images(train_folder_path, num_images=3)

       显示图片

 2.4数据处理

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 创建自定义Dataset
class CatDogDataset(Dataset):
    def __init__(self, folder_path, transform=None):
        self.folder_path = folder_path
        self.transform = transform
        self.cat_files = [file for file in os.listdir(os.path.join(folder_path, 'cats')) if file.endswith('.jpg')]
        self.dog_files = [file for file in os.listdir(os.path.join(folder_path, 'dogs')) if file.endswith('.jpg')]

    def __len__(self):
        return len(self.cat_files) + len(self.dog_files)

    def __getitem__(self, index):
        if index < len(self.cat_files):
            img_path = os.path.join(self.folder_path, 'cats', self.cat_files[index])
            label = 0  # 0 represents cat
        else:
            img_path = os.path.join(self.folder_path, 'dogs', self.dog_files[index - len(self.cat_files)])
            label = 1  # 1 represents dog

        img = Image.open(img_path).convert('RGB')

        if self.transform:
            img = self.transform(img)

        return img, label

        先将训练集的图片统一标准,方便训练,调整图像大小为 (224, 224) 像素,将图片转化成Pytorch张量,同时对图像进行标准化,标准化的目的是将图像的像素值缩放到一个较小的范围,以便更好地适应模型的训练。在这里,给定了均值(mean)和标准差(std),它们用于调整图像的像素值。

        创建一个自定义的dataset,用于加载数据集,并在训练模型时使用,同时根据路径给各个图片打了标签。

3模型训练

        这里采用的模型是预训练的ResNet18(Residual Network with 18 layers),ResNet18是一个深度卷积神经网络架构,属于ResNet系列的一部分。ResNet系列是由微软研究院提出的,通过引入残差学习(residual learning)的概念来解决深度神经网络训练过程中的梯度消失和梯度爆炸问题。

3.1ResNet18

以下是ResNet18的主要特点和架构:

  1. 残差学习: ResNet引入了残差块(Residual Block),使得网络可以学习残差映射。每个残差块包含跳跃连接(skip connection),允许信息在网络中直接传递,而不是仅通过层层传递。这有助于解决梯度消失问题,使得可以训练更深的网络。

  2. ResNet18结构: ResNet18由基础的卷积层、池化层、残差块等组成。整体架构较浅,共有18个可学习的层。下面是ResNet18的基本结构:

    • 输入层:3x224x224 的图像(RGB通道)。
    • 预处理:7x7卷积层、最大池化,逐步减小图像尺寸。
    • 残差块:包含多个残差块,其中每个块都包含两个卷积层和一个跳跃连接。
    • 全局平均池化:对特征图进行全局平均池化,减少参数数量。
    • 全连接层:输出最终的分类结果。
  3. 激活函数: 在ResNet中,常用的激活函数是修正线性单元(ReLU),它在每个残差块中被使用。

  4. 全局平均池化: ResNet采用全局平均池化来减少参数数量,将最后的特征图的每个通道的值取平均作为整个通道的池化值。

        ResNet18相对较浅,适用于一些计算资源有限的场景(我这里全程使用CPU跑,有条件的可用使用GPU,模型训练时间将会大大缩短),同时在许多图像分类任务中表现出色。由于其简单而有效的结构,ResNet18经常被用作迁移学习的基础模型,用于处理各种计算机视觉任务。

3.2搭建模型

3.2.1数据集的划分

  • 通过 CatDogDataset 类加载整个训练集,并应用了数据预处理操作 transform。
  • 使用 random_split 函数将整个数据集划分为训练集(80%)和验证集(20%)。train_dataset 和 val_dataset 分别表示训练集和验证集。
from torch.utils.data import random_split

full_dataset = CatDogDataset(train_folder_path, transform=transform)
train_size = int(0.8 * len(full_dataset))
val_size = len(full_dataset) - train_size
train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])

3.2.2数据加载器的创建

  • 使用 DataLoader 创建了训练集和验证集的数据加载器 (train_loader 和 val_loader)。
  • batch_size=32 指定了每个小批量的样本数,shuffle=True 表示在每个epoch开始前打乱数据顺序,以增加模型训练的随机性。
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)

3.2.3模型的定义

  • 使用 models.resnet18(pretrained=True) 加载了预训练的ResNet18模型。这里的 pretrained=True 表示加载在ImageNet上预训练得到的权重。
  • 修改了模型的最后一层 (model.fc),将输出维度从512修改为2,以适应猫狗图像分类的二分类任务。
# 定义模型
model = models.resnet18(pretrained=True)
model.fc = nn.Linear(512, 2)  # 修改最后一层,适应二分类任务

3.2.4损失函数和优化器的定义

  • 使用交叉熵损失函数 (nn.CrossEntropyLoss()) 来计算模型输出与标签之间的损失。
  • 使用Adam优化器 (optim.Adam) 来更新模型的参数,学习率为0.001。

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

3.3模型训练

3.3.1训练模型

  • 使用 num_epochs 指定了训练的总epoch数。
  • 使用 torch.device 将模型移动到GPU(如果可用),或者保持在CPU上。
  • 创建了两个空列表 train_lossesval_accuracies,用于保存每个epoch的训练损失和验证准确率。
# 记录训练开始时间
start_time = time.time()
# 训练模型
num_epochs = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

# 训练过程中保存损失函数和准确率
train_losses = []
val_accuracies = []

3.3.2训练循环

  • 对于每个epoch,模型分别处于训练(model.train())和评估(model.eval())模式。
  • 在训练模式下,使用 train_loader 遍历训练集,进行模型的训练。计算训练集上的损失并进行反向传播优化。
  • 在评估模式下,使用 val_loader 在验证集上评估模型。计算验证集上的准确率。
for epoch in range(num_epochs):
    model.train()
    running_loss = 0.0
    for inputs, labels in tqdm(train_loader, desc=f'Epoch {epoch + 1}/{num_epochs}', unit='batch'):
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

    # 计算训练集损失
    train_loss = running_loss / len(train_loader)
    train_losses.append(train_loss)

    # 在验证集上评估模型
    model.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for inputs, labels in val_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    # 计算验证集准确率
    val_accuracy = correct / total
    val_accuracies.append(val_accuracy)

    print(f'Epoch {epoch + 1}/{num_epochs} - Training Loss: {train_loss}, Validation Accuracy: {val_accuracy}')

3.3.3记录训练时间

        在训练开始前记录了训练开始的时间戳,并在训练结束后记录了训练结束的时间戳。通过这两个时间戳的差值,计算了整个训练过程的耗时。

# 记录训练结束时间
end_time = time.time()

# 输出训练时间
training_time = end_time - start_time
print(f'Training Time: {training_time} seconds')

3.3.4训练可视化

        打印在训练过程中损失函数和验证机准确率的变化

# 可视化损失函数和准确率
plt.figure(figsize=(10, 5))

# 绘制损失函数曲线
plt.subplot(2, 1, 1)
plt.plot(range(1, num_epochs + 1), train_losses, label='Training Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.legend()

# 绘制准确率曲线
plt.subplot(2, 1, 2)
plt.plot(range(1, num_epochs + 1), val_accuracies, label='Validation Accuracy', color='orange')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Validation Accuracy over Epochs')
plt.legend()

plt.tight_layout()
plt.show()

3.3.5模型保存

        使用 torch.save 将训练好的模型参数保存到文件 'cat_dog_classifier.pth' 中,以便在之后的任务中加载模型并进行预测。        

torch.save(model.state_dict(), 'cat_dog_classifier.pth')

3.3.6运行结果

         经过了漫长的等待,模型训练用了整整3小时(建议在跑模型的时候干点别的),训练的损失值在0.0385到0.04之间浮动,验证集的准确率在0.962到0.964之间浮动。

4模型预测

4.1计算推理时间和f1值 

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

# 创建自定义Dataset(测试集)
class TestCatDogDataset(Dataset):
    def __init__(self, folder_path, transform=None):
        self.folder_path = folder_path
        self.transform = transform
        self.class_to_label = {'cats': 0, 'dogs': 1}

        # 获取所有图像文件和对应的标签
        self.test_files = []
        self.labels = []
        for class_name in os.listdir(folder_path):
            class_path = os.path.join(folder_path, class_name)
            if os.path.isdir(class_path):
                for file in os.listdir(class_path):
                    if file.endswith('.jpg'):
                        self.test_files.append(os.path.join(class_path, file))
                        self.labels.append(self.class_to_label[class_name])

    def __len__(self):
        return len(self.test_files)

    def __getitem__(self, index):
        img_path = self.test_files[index]
        label = self.labels[index]

        img = Image.open(img_path).convert('RGB')

        if self.transform:
            img = self.transform(img)

        return img, label

# 创建测试集Dataset
test_dataset = TestCatDogDataset(test_folder_path, transform=transform)

# 创建测试集数据加载器
test_loader = DataLoader(test_dataset, batch_size=32)

# 定义模型(保持和训练时一致的模型结构)
model = models.resnet18(pretrained=False)
model.fc = nn.Linear(512, 2)  # 修改最后一层,适应二分类任务

# 加载训练好的模型参数
model.load_state_dict(torch.load('cat_dog_classifier.pth'))
model.eval()

# 记录预测开始时间
start_time_predict = time.time()

# 预测
predictions = []
true_labels = []

with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        predictions.extend(predicted.cpu().numpy())
        true_labels.extend(labels.cpu().numpy())

# 记录预测结束时间
end_time_predict = time.time()

# 输出预测时间
predict_time = end_time_predict - start_time_predict
print(f'Prediction Time: {predict_time:.3f} seconds')

# 计算 F1 值
if len(true_labels) > 0:
    f1 = f1_score(true_labels, predictions)
    print(f'F1 Score: {f1:.3f}')
else:
    print('Unable to calculate F1 Score. No true labels in the test set.')

        做类似训练集的数据处理,包括图片标准化,标签化等,由于test数据集与train数据集的结构一致,这里不再解释。计算模型在训练集的推理时间和f1值:

        f1值虽然有0.98,但是推理时间高达19秒 

4.2预测单张图片

# 随机选择一张图片
random_class = random.choice(['cats', 'dogs'])
random_file = random.choice(os.listdir(os.path.join(test_folder_path, random_class)))
random_img_path = os.path.join(test_folder_path, random_class, random_file)

# 预处理图像
img = Image.open(random_img_path).convert('RGB')
img_tensor = transform(img).unsqueeze(0)  # 添加 batch 维度

# 预测
with torch.no_grad():
    output = model(img_tensor)
    _, predicted = torch.max(output.data, 1)

# 显示图片
plt.imshow(img)
plt.title(f"Predicted Label: {'cat' if predicted.item() == 0 else 'dog'}")
plt.show()

        从test测试集中随机选取一张图片进行预测,预测结果直接用作图片标题输出

5使用oneAPI组件

        oneAPI 是一个由英特尔领导的行业倡议,旨在简化和加速跨不同硬件架构的开发。oneAPI 旨在提供一个统一的编程模型,使开发人员能够轻松地在不同类型的处理器上编写高性能代码。

5.1使用Intel Extension for PyTorch进行优化

import intel_extension_for_pytorch as ipex
import torch
import torch.nn as nn
from torchvision import models

# 定义模型
model = models.resnet18(pretrained=False)
model.fc = nn.Linear(512, 2)  # 修改最后一层,适应二分类任务

# 加载训练好的模型参数
model.load_state_dict(torch.load('cat_dog_classifier.pth'))
model.eval()

# 使用 ipex.optimize 进行优化
optimized_model = ipex.optimize(model)

# 保存模型时同时保存结构信息
torch.save({'model_state_dict': optimized_model.state_dict(), 'model_structure': optimized_model}, 'new_cat_dog_classifier.pth')

        重新加载训练好的模型(cat_dog_classifier.pth),使用Intel Extension for PyTorch进行优化,建议使用Intel® DevCloud云环境(没有账号的需要先注册),保存优化后的模型(new_cat_dog_classfier.pth)和模型结构

5.2加载并创建优化后的模型

checkpoint = torch.load('new_cat_dog_classifier.pth')
model_structure = checkpoint['model_structure']
model_state_dict = checkpoint['model_state_dict']

# 创建模型
loaded_model = ipex.optimize(model_structure)
loaded_model.load_state_dict(model_state_dict)
loaded_model.eval()

5.3使用Intel Extension for PyTorch优化后的模型预测

# 预测
predictions = []
true_labels = []

# 记录预测开始时间
start_time_predict = time.time()

with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = loaded_model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        predictions.extend(predicted.cpu().numpy())
        true_labels.extend(labels.cpu().numpy())

# 记录预测结束时间
end_time_predict = time.time()

# 输出预测时间
predict_time = end_time_predict - start_time_predict
print(f'Prediction Time: {predict_time:.3f} seconds')

# 计算 F1 值
if len(true_labels) > 0:
    f1 = f1_score(true_labels, predictions)
    print(f'F1 Score: {f1:.3f}')
else:
    print('Unable to calculate F1 Score. No true labels in the test set.')

运行结果

        优化结果在预测时间上尤为明显,从没优化前的19秒缩减到现在的7.99秒, F1值也有进一步的提升,从0.98直接就到了1.00

5.4使用 Intel® Neural Compressor 量化模型

        加载优化后的模型进行量化

import torch
import torch.nn as nn
from torchvision import models
from neural_compressor.config import PostTrainingQuantConfig, AccuracyCriterion
from neural_compressor import quantization
import os

# 1. 定义模型
class CustomModel(nn.Module):
    def __init__(self, num_classes=2):
        super(CustomModel, self).__init__()
        # 使用 ResNet18 作为基础模型
        self.base_model = models.resnet18(pretrained=False)
        
        # 修改最后一层以适应二分类任务
        in_features = self.base_model.fc.in_features
        self.base_model.fc = nn.Linear(in_features, num_classes)

    def forward(self, x):
        return self.base_model(x)

# 2. 加载优化模型
model = CustomModel(num_classes=2)

# 3. 加载模型参数,确保匹配模型结构
checkpoint = torch.load('new_cat_dog_classifier.pth')
model_dict = model.state_dict()
for key in checkpoint['model_state_dict']:
    if key in model_dict and checkpoint['model_state_dict'][key].shape == model_dict[key].shape:
        model_dict[key] = checkpoint['model_state_dict'][key]
model.load_state_dict(model_dict)

model.eval()  # 设置模型为评估模式

# 4. 配置量化参数
conf = PostTrainingQuantConfig(backend='ipex',  
                               accuracy_criterion=AccuracyCriterion(higher_is_better=True, 
                                                                   criterion='relative',  
                                                                   tolerable_loss=0.01))

# 5. 执行量化
q_model = quantization.fit(model,
                           conf,
                           calib_dataloader=train_loader,  # 替换为你的数据加载器
                           eval_func=eval_func)

# 6. 保存量化模型
quantized_model_path = './quantized_models'
if not os.path.exists(quantized_model_path):
    os.makedirs(quantized_model_path)

q_model.save(quantized_model_path)

         量化成功后,出现以下结果

 

5.5加载量化后的模型

import torch
import json
 
from neural_compressor import quantization
 
# 指定量化模型的路径
quantized_model_path = './quantized_models'
 
# 加载 Qt 模型和 JSON 配置
resnet18_model_path = f'{quantized_model_path}/best_model.pt'
json_config_path = f'{quantized_model_path}/best_configure.json'
 
# 加载 Qt 模型
resnet18_model = torch.jit.load(resnet18_model_path, map_location='cpu')
 
# 加载 JSON 配置
with open(json_config_path, 'r') as json_file:
    json_config = json.load(json_file)

5.6使用量化后的模型进行预测

resnet18_model.eval()

# 预测
predictions = []
true_labels = []

# 记录预测开始时间
start_time_predict = time.time()

with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = loaded_model(inputs)
        _, predicted = torch.max(outputs.data, 1)
        predictions.extend(predicted.cpu().numpy())
        true_labels.extend(labels.cpu().numpy())

# 记录预测结束时间
end_time_predict = time.time()

# 输出预测时间
predict_time = end_time_predict - start_time_predict
print(f'Prediction Time: {predict_time:.3f} seconds')

# 计算 F1 值
if len(true_labels) > 0:
    f1 = f1_score(true_labels, predictions)
    print(f'F1 Score: {f1:.3f}')
else:
    print('Unable to calculate F1 Score. No true labels in the test set.')

 运行结果

        预测时间再次缩减,从7.99秒缩减到5.03秒,与此同时,F1分数稳定不变,仍然是1.00.

6总结

        在本次事例中,足以证明OneApi强大的优化能力和模型压缩能力。未优化前的预测时间是19秒,F1值是0.98,经过优化后,在将F1提升到1.00的情况下把预测时间缩减到7.99秒,经过量化后,不仅F1值保持1.00不变,训练时间还进一步缩减到5.03秒,说明 oneAPI 在模型精度和性能之间找到了一个良好的平衡点。

  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
好的,以下是一个基于ResNet18实现分类的程序,使用PyTorch框架: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义数据预处理 transform_train = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载数据集 trainset = torchvision.datasets.ImageFolder(root='./train', transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2) testset = torchvision.datasets.ImageFolder(root='./test', transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=2) # 定义ResNet18模型 class ResNet18(nn.Module): def __init__(self, num_classes=2): super(ResNet18, self).__init__() self.resnet = torchvision.models.resnet18(pretrained=True) self.resnet.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True) def forward(self, x): x = self.resnet(x) return x # 定义模型、损失函数、优化器 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net = ResNet18().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/100)) running_loss = 0.0 print('Finished Training') # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) ``` 请注意,此程序假定您已经下载了数据集并将其分别放在train和test文件夹中。另外,此程序使用预训练的ResNet18模型,因此需要下载预训练权重。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值