计算机图形学入门games103——fvm体积有限元

本质上线性有限元和体积有限元是等价的

如果说我将两个物体接触的面设为L,在上面单位面积所受到的力设做t,那么整个面所收到的合力就是整个面对于t的积分

那么表面的f可以写为法向量和应力矩阵的乘积

那么将其放入三角形中怎么认识呢,我们将x_0作为一个面的代表,那么对于周围单独的每一个三角形都有对其的作用力,此时我们并不知道怎么计算L,因此需要使用微积分的定量,将其转化为负的应力对相邻两个边的积分之和,因为L和另外两个边是一个封闭的图像,积分总和一定为0,这里取中点的原因是假设每个三角形对三个点力的贡献是平均的

在三维的情况下,计算的原理是一样的,就是多了一个维度,因此此时是对面的积分,转化后的公式也就如下

三角形面积的计算,空间向量知识(两条边的叉乘除以2),norm法向量,叉乘处于叉乘的绝对值

最后得到的就是三个边的叉乘和应力的公式

那么怎么得到应力stress呢,注意这个应力和我们上一次所使用的应力是不一样的,在这里的解释是,之前我们在线性有限元中,能量是能量密度和面积的乘积,能量密度和strain的函数,而这个面积是原面积(reference),这个条件下我们所计算出的矩阵Stress是在reference条件下的

那么FVM中,我们假设出来的单位面积所受的力t和法向量n是在形变后的条件下的,因此两个stress是有区别的,我们在这种条件下怎么描述stress呢,那么有四种组合可能,其中常用的是三种,这节课我们使用的是柯西stress (Cauchy)

我们无法直接获取到柯西应力,但是第二皮耶罗应力在上次的fem中已知如何求解,就是能量密度对于应变的求导,而第二皮耶罗应力和第一皮耶罗应力乘以一个形变矩阵就可以转换,而第一皮耶罗应力和柯西应力之间有一个转化公式(过程省略,在paper中)

那么我们知道柯西应力是把形变后的应力写为形变后的Norm表达,而第一皮耶罗应力是形变后的应力写为形变前的Norm表达,那么norm是很容易计算的,而形变前的norm向量都是常数,简化了计算,用P = Fs,得到简化公式,而S可以根据FEM中的公式得出

其中S的计算如下,FEM中推导

形变矩阵计算公式,也是在之前就有过推导

这些计算的选择逻辑是选择对计算最友好的方式,本质上几种应力的所做的工作都是映射,最后计算出的力都是等价的

关于b_1的更多思考

我们以此继续推导这些Norm,可以得到以下结论

最后的伪代码

这个四面体是一个实心的四面体,不是一个空壳

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值