罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理之间是特殊到一般的关系
柯西(Cauchy)中值定理是两个函数之间的关系
[f(a)-f(b)]╱[F(a)-F(b)]=f'(ξ)╱F'(ξ)
条件:(1)在区间[a,b]上连续 (2)在区间(a,b)内可导 (3)在区间(a,b)内,F'(x)≠0
若使F(x)=x,则推出拉格朗日(Lagrange)中值定理,若使f(a)=f(b),则可以推出罗尔定理
罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理之间是特殊到一般的关系
柯西(Cauchy)中值定理是两个函数之间的关系
[f(a)-f(b)]╱[F(a)-F(b)]=f'(ξ)╱F'(ξ)
条件:(1)在区间[a,b]上连续 (2)在区间(a,b)内可导 (3)在区间(a,b)内,F'(x)≠0
若使F(x)=x,则推出拉格朗日(Lagrange)中值定理,若使f(a)=f(b),则可以推出罗尔定理