高等数学 3.1 微分中值定理

一、罗尔定理

费马引理 设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某邻域 U ( x 0 ) U(x_0) U(x0) 内有定义,并且在 x 0 x_0 x0 处可导,如果对任意的 x ∈ U ( x 0 ) x \in U(x_0) xU(x0) ,有
f ( x ) ⩽ f ( x 0 ) ( 或 f ( x ) ⩾ f ( x 0 ) ) , f(x) \leqslant f(x_0) \quad (或 f(x) \geqslant f(x_0)) , f(x)f(x0)(f(x)f(x0)),
那么 f ′ ( x 0 ) = 0 f^{'}(x_0) = 0 f(x0)=0 .

证明:不妨设 x ∈ U ( x 0 ) x \in U(x_0) xU(x0) 时, f ( x ) ⩽ f ( x 0 ) f(x) \leqslant f(x_0) f(x)f(x0) (如果 f ( x ) ⩾ f ( x 0 ) f(x) \geqslant f(x_0) f(x)f(x0) ,可类似地证明)。于是,对于 x 0 + Δ x ∈ U ( x 0 ) x_0 + \Delta x \in U(x_0) x0+ΔxU(x0) ,有
f ( x 0 + Δ x ) ⩽ f ( x 0 ) , f(x_0 + \Delta x) \leqslant f(x_0) , f(x0+Δx)f(x0),
从而当 Δ x > 0 \Delta x > 0 Δx>0
f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⩽ 0 ; \cfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leqslant 0 ; Δxf(x0+Δx)f(x0)0;
Δ x < 0 \Delta x < 0 Δx<0 时,
f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⩾ 0. \cfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geqslant 0 . Δxf(x0+Δx)f(x0)0.
根据函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导的条件及极限的保号性,便得到
f ′ ( x 0 ) = f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⩽ 0 , f ′ ( x 0 ) = f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x ⩾ 0. \begin{align*} f^{'}(x_0) &= f^{'}_{+}(x_0) = \lim_{\Delta x \to 0^+} \cfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leqslant 0 , \\ f^{'}(x_0) &= f^{'}_{-}(x_0) = \lim_{\Delta x \to 0^-} \cfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geqslant 0 . \end{align*} f(x0)f(x0)=f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)0,=f(x0)=Δx0limΔxf(x0+Δx)f(x0)0.
所以, f ′ ( x 0 ) = 0 f^{'}(x_0) = 0 f(x0)=0 .证毕。

通常称导数等于零的点为函数的驻点(或稳定点临界点)。

罗尔定理 如果函数 f ( x ) f(x) f(x) 满足
(1) 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
(2) 在开区间 ( a , b ) (a, b) (a,b) 内可导;
(3) 在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b)
那么在 ( a , b ) (a, b) (a,b) 内至少有一点 ξ ( a < ξ < b ) \xi (a < \xi < b) ξ(a<ξ<b) ,使得 f ′ ( ξ ) = 0 f^{'} (\xi) = 0 f(ξ)=0 .

证明:由于 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上连续,根据闭区间上连续函数的最大值最小值定理, f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上必定取得它的最大值 M M M 和最小值 m m m 。这样,只有两种情形:
(1) M = m M = m M=m 。这时 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b] 上必然取相同的数值 M M M f ( x ) = M f(x) = M f(x)=M 。由此, ∀ x ∈ ( a , b ) \forall x \in (a, b) x(a,b) ,有 f ′ ( x ) = 0 f^{'}(x) = 0 f(x)=0 。因此,任取 ξ ∈ ( a , b ) \xi \in (a, b) ξ(a,b) ,有 f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f(ξ)=0
(2) M > m M > m M>m 。因为 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b) ,所以 M M M m m m 这两个数中至少有一个不等于 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 的端点处的函数值。为确定起见,不妨设 M ≠ f ( a ) M \neq f(a) M=f(a) (如果设 m ≠ f ( a ) m \neq f(a) m=f(a) ,证法完全类似),那么必定在开区间 ( a , b ) (a, b) (a,b) 内有一点 ξ \xi ξ 使 f ( ξ ) = M f(\xi) = M f(ξ)=M 。因此, ∀ x ∈ [ a , b ] \forall x \in [a, b] x[a,b] ,有 f ( x ) ⩽ f ( ξ ) f(x) \leqslant f(\xi) f(x)f(ξ) ,从而由费马引理可知 f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f(ξ)=0
定理证毕。

二、拉格朗日中值定理

拉格朗日中值定理 如果函数 f ( x ) f(x) f(x) 满足
(1) 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
(2) 在开区间 ( a , b ) (a, b) (a,b) 内可导;
那么在 ( a , b ) (a, b) (a,b) 内至少有一点 ξ ( a < ξ < b ) \xi (a < \xi < b) ξ(a<ξ<b) ,使等式
f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) (1) f(b) - f(a) = f^{'} (\xi) (b - a) \tag{1} f(b)f(a)=f(ξ)(ba)(1)
成立。

拉格朗日中值定理的证明
引进辅助函数
φ ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) . \varphi (x) = f(x) - f(a) - \cfrac{f(b) - f(a)}{b - a} (x - a) . φ(x)=f(x)f(a)baf(b)f(a)(xa).
容易验证函数 φ ( x ) \varphi (x) φ(x) 适合罗尔定理的条件: φ ( a ) = φ ( b ) = 0 \varphi(a) = \varphi(b) = 0 φ(a)=φ(b)=0 φ ( x ) \varphi (x) φ(x) 在闭区间 [ a , b ] [a, b] [a,b] 上连续,在开区间 ( a , b ) (a, b) (a,b) 内可导,且
φ ′ ( x ) = f ′ ( x ) − f ( b ) − f ( a ) b − a . \varphi^{'}(x) = f^{'}(x) - \cfrac{f(b) - f(a)}{b - a} . φ(x)=f(x)baf(b)f(a).
根据罗尔定理,可知在 ( a , b ) (a, b) (a,b) 内至少有一点 ξ \xi ξ ,使 φ ′ ( ξ ) = 0 \varphi^{'}(\xi) = 0 φ(ξ)=0 ,即
f ′ ( ξ ) − f ( b ) − f ( a ) b − a = 0. f^{'}(\xi) - \cfrac{f(b) - f(a)}{b - a} = 0 . f(ξ)baf(b)f(a)=0.
由此得
f ( b ) − f ( a ) b − a = f ′ ( ξ ) . \cfrac{f(b) - f(a)}{b - a} = f^{'}(\xi) . baf(b)f(a)=f(ξ).
定理证毕。

定理 如果函数 f ( x ) f(x) f(x) 在区间 I I I 上连续, I I I 内可导且导数恒为零,那么 f ( x ) f(x) f(x) 在区间 I I I 上是一个常数。

证明:在区间 I I I 上任取两点 x 1 , x 2 ( x 1 < x 2 ) x_1, x_2 (x_1 < x_2) x1,x2(x1<x2) ,应用 ( 1 ) (1) (1) 式就得
f ( x 2 ) − f ( x 1 ) = f ′ ( ξ ) ( x 2 − x 1 ) ( x 1 < ξ < x 2 ) . f(x_2) - f(x_1) = f^{'}(\xi) (x_2 - x_1) \quad (x_1 < \xi < x_2). f(x2)f(x1)=f(ξ)(x2x1)(x1<ξ<x2).
由假定, f ′ ( ξ ) = 0 f^{'}(\xi) = 0 f(ξ)=0 ,所以 f ( x 2 ) − f ( x 1 ) = 0 f(x_2) - f(x_1) = 0 f(x2)f(x1)=0 ,即
f ( x 2 ) = f ( x 1 ) . f(x_2) = f(x_1). f(x2)=f(x1).
因为 x 1 , x 2 x_1, x_2 x1,x2 I I I 上任意两点,所以上面的等式表明: f ( x ) f(x) f(x) I I I 上的函数值总是相等的,这就是说, f ( x ) f(x) f(x) 在区间 I I I 上是一个常数。

从上述论证中可以看出,虽然拉格朗日中值定理中的 ξ \xi ξ 的准确数值不知道,但在这里并不妨碍它的应用。

例题 证明当 x > 0 x > 0 x>0 时,
x 1 + x < ln ⁡ ( 1 + x ) < x . \cfrac{x}{1 + x} < \ln{(1 + x)} < x . 1+xx<ln(1+x)<x.

证明:设 f ( t ) = ln ⁡ ( 1 + t ) f(t) = \ln{(1 + t)} f(t)=ln(1+t) ,显然 f ( t ) f(t) f(t) 在区间 [ 0 , x ] [0, x] [0,x] 上满足拉格朗日中值定理的条件,根据定理,应有
f ( x ) − f ( 0 ) = f ′ ( ξ ) ( x − 0 ) , 0 < ξ < x . f(x) - f(0) = f^{'}(\xi) (x - 0) , \quad 0 < \xi < x . f(x)f(0)=f(ξ)(x0),0<ξ<x.
由于 f ( 0 ) = 0 f(0) = 0 f(0)=0 f ′ ( t ) = 1 1 + t f^{'}(t) = \cfrac{1}{1 + t} f(t)=1+t1 ,因此上式即为
ln ⁡ ( 1 + x ) = x 1 + ξ . \ln{(1 + x)} = \cfrac{x}{1 + \xi} . ln(1+x)=1+ξx.
又由 0 < ξ < x 0 < \xi < x 0<ξ<x ,有
x 1 + x < x 1 + ξ < x , \cfrac{x}{1 + x} < \cfrac{x}{1 + \xi} < x , 1+xx<1+ξx<x,

x 1 + x < ln ⁡ ( 1 + x ) < x ( x > 0 ) . \cfrac{x}{1 + x} < \ln{(1 + x)} < x (x > 0) . 1+xx<ln(1+x)<x(x>0).

三、柯西中值定理

柯西中值定理 如果函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 满足
(1) 在闭区间 [ a , b ] [a, b] [a,b] 上连续;
(2) 在开区间 ( a , b ) (a, b) (a,b) 内可导;
对任一 x ∈ ( a , b ) x \in (a,b) x(a,b) F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F(x)=0
那么在 ( a , b ) (a, b) (a,b) 内至少有一点 ξ \xi ξ ,使等式
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) . (2) \cfrac{f(b) - f(a)}{F(b) - F(a)} = \cfrac{f^{'}(\xi)}{F^{'}(\xi)} . \tag{2} F(b)F(a)f(b)f(a)=F(ξ)f(ξ).(2)

证明:首先注意到 F ( b ) − F ( a ) ≠ 0 F(b) - F(a) \neq 0 F(b)F(a)=0 。这是由于
F ( b ) − F ( a ) = F ′ ( η ) ( b − a ) , F(b) - F(a) = F^{'}(\eta) (b - a) , F(b)F(a)=F(η)(ba),
其中 a < η < b a < \eta < b a<η<b ,根据假定 F ′ ( η ) ≠ 0 F^{'}(\eta) \neq 0 F(η)=0 ,又 b − a ≠ 0 b - a \neq 0 ba=0 ,所以
F ( b ) − F ( a ) ≠ 0. F(b) - F(a) \neq 0 . F(b)F(a)=0.
设辅助函数
φ ( x ) = f ( x ) − f ( b ) − f ( a ) F ( b ) − F ( a ) F ( x ) , \varphi (x) = f(x) - \cfrac{f(b) - f(a)}{F(b) - F(a)} F(x) , φ(x)=f(x)F(b)F(a)f(b)f(a)F(x),
显然, φ ( x ) \varphi (x) φ(x) 在闭区间 [ a , b ] [a, b] [a,b] 上连续,在开区间 ( a , b ) (a, b) (a,b) 内可导,且
φ ( a ) = φ ( b ) = F ( b ) f ( a ) − F ( a ) f ( b ) F ( b ) − F ( a ) , \varphi (a) = \varphi (b) = \cfrac{F(b)f(a) - F(a)f(b)}{F(b) - F(a)} , φ(a)=φ(b)=F(b)F(a)F(b)f(a)F(a)f(b),
φ ( x ) \varphi (x) φ(x) 适合罗尔定理的条件,因此在 ( a , b ) (a, b) (a,b) 内至少有一点 ξ \xi ξ ,使
φ ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) F ( b ) − F ( a ) F ′ ( ξ ) = 0 \varphi^{'} (\xi) = f^{'}(\xi) - \cfrac{f(b) - f(a)}{F(b) - F(a)} F^{'}(\xi) = 0 φ(ξ)=f(ξ)F(b)F(a)f(b)f(a)F(ξ)=0
由此得
f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) . \cfrac{f(b) - f(a)}{F(b) - F(a)} = \cfrac{f^{'}(\xi)}{F^{'}(\xi)} . F(b)F(a)f(b)f(a)=F(ξ)f(ξ).
定理证毕。

原文链接:高等数学 3.1 微分中值定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值