数据分析并非只是简单的数据分析工具三板斧——Excel、SQL、Python,更重要的是数据分析思维。没有数据分析思维和业务知识,就算拿到一堆数据,也不知道如何下手。
推荐书本《数据分析思维——分析方法和业务知识》,本文内容就是提取这本书的主体思维,以提高自身的数据分析素养。
先来点鸡汤:学会把书读薄,就要学会总结,撰写学习博客的过程就是加深印象的过程,也是持续提高自身素质的有效方法。冲冲冲!
相关篇章:
数据分析思维(二):分析方法——5W2H分析方法、逻辑树分析方法、行业分析方法
一、对比分析方法
1.1 什么是对比分析方法?有什么用?
对比分析,顾名思义,肯定要有对比的对象。
对比分析有什么用?
案例1:假如去超市买衣服,你看上了一件衣服,但是要299块,你会觉得怎么这衣服这么贵,直接扭头去看其他衣服了,然后你看见了旁边一件款式差不多的衣服,离谱的是,后者要899块,你呆在哪里看着这两件衣服,你就会觉得,第一件299的衣服挺实惠的,于是你选择去买第一件(就算不买,你看到第二件衣服时,你肯定会重新思考第一件衣服的性价比)。假如没有899块的衣服在旁边作对比,你甚至直接放弃第一件衣服了,这就是对比分析的作用。(心理学上,该现象叫“价格锚定”)
案例2:假如你平台的用户的日活跃率是4%,你觉得是高还是低?看不出来。但是我告诉你正常的日活跃率是7%呢?这时你就可以一下子看出来问题了。
1.2 如何使用对比分析?
弄清楚两个问题:和谁比?如何比?
(1)和谁比?
两种:和自己比,和行业比。
雷军在小米上市前公开了一个承诺:“小米的硬件综合净利润永远不会超过5%,如果有超过的部分,将超出的部分全部返还给用户”。这个承诺其实是经过数据分析得出的结论,因为硬件综合净利润超过5%的公司几乎没有。这一承诺既不会让小米陷入无法实现困境,也给自己用户留下“小米产品性价比高”的产品形象。
和自己比:这个承诺是小米和自己的历史业绩比,硬件净利润肯定小于5%
和行业比:领头行业的硬件净利润也达不到5%。
(2)如何比较?
从 3 个维度比较:
- 数据整体大小:某些衡量数据整体大小的指标,如均值,中位数等。
- 数据整体波动:基于变异系数比较(衡量数据离散程度的相对统计量,变异系数 = 标准差 / 平均值)
- 趋势变化:从时间维度看数据的变化。常用方法有时间折线图,环比和同比等方法。
小结对比表格:
1.3 对比分析注意事项
进行对比分析时,注意保证比较对象的规模要一致。为什么呢?
举个例子,A,B两地区所以店铺的销售总额对比。假如A的销售总额每个月都大于B的销售总额,那么你得出结论: 地区B的业务没有A地区好。
这结论看似是对的。但是假如A地区是一线城市,B地区是三线城市,明显,两地店铺数量差别太大了,导致A和B作对比分析没有实际意义!没有可比性!
怎么解决上述问题?
可以用每个地区的销售总额除以店铺数量,得到每个地区的单个店铺的每天平均销售额。这样,A和B地区就规模一致了,具有可比性。
二、A/B测试
A/B测试背后也是用了对比分析方法。
什么是A/B测试。
可以理解为一个策略优化方法,包含测试组(或称实验组),对照组。
举个例子:使用消费券拉动消费是否会导致一旦用户使用完消费券后,消费很快就下降?
我们进行A/B测试。实验组是有领取消费券消费的用户,对照组是没有消费券使用的用户。消费券过期后,实验组与对照组对比,发现实验组的消费并没有明显减少。说明,用户不会因为使用完消费券后就减少消费或停止消费券,使用消费券拉动消费是有效果的。
小结
# 文章仅供个人学习。后续还会继续更新。冲!