打卡学习 | 机器人学导论9

打卡学习 week9 | 机器人学导论

前情回顾

在上周,我学习了分别在Joint-Space和笛卡尔坐标系中进行平滑轨迹的求解。Joint-Space下的轨迹规划就得先将所有机械臂末端点转换为Joint状态,再进行轨迹规划,求得解后,再将结果反解,转换回机械臂末端点状态;笛卡尔坐标系下的轨迹规划是先将机械臂末端点进行轨迹规划,再将其通过逆向运动学转换成Joint状态。我还学习了其中一种轨迹规划的方法:三次多项式法。通过对初始点,中间点和结束点分别设立一个三次多项式,并将其一次导和二次导,将条件带入,求得其系数以得解。

多段三次多项式

在这里插入图片描述
我们规划轨迹使得机械臂运动的速度和加速度都是连续的
下面以一个经过一个中间点的轨迹为例:
在这里插入图片描述
t 0 — t 1 t_0—t_1 t0t1段:
在这里插入图片描述
t 1 — t f t_1—t_f t1tf段:
在这里插入图片描述
方程组中存在着8个未知数。
关于三个点三个位置的方程组:
在这里插入图片描述
在这个例子中起点和终点的速度为零:
在这里插入图片描述
(注意这里不是只可以取零,若是求一段连续的运动中的其中一段轨迹,这里的起点和终点速度并非零,根据题目具体取值)
中间点的速度和加速度:
在这里插入图片描述
代数解法:
△ t 1 △t_1 t1 = △ t 2 △t_2 t2,8个方程联立:
在这里插入图片描述
矩阵解法:
在这里插入图片描述

通用三次多项式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值