打卡学习 week9 | 机器人学导论
前情回顾
在上周,我学习了分别在Joint-Space和笛卡尔坐标系中进行平滑轨迹的求解。Joint-Space下的轨迹规划就得先将所有机械臂末端点转换为Joint状态,再进行轨迹规划,求得解后,再将结果反解,转换回机械臂末端点状态;笛卡尔坐标系下的轨迹规划是先将机械臂末端点进行轨迹规划,再将其通过逆向运动学转换成Joint状态。我还学习了其中一种轨迹规划的方法:三次多项式法。通过对初始点,中间点和结束点分别设立一个三次多项式,并将其一次导和二次导,将条件带入,求得其系数以得解。
多段三次多项式
我们规划轨迹使得机械臂运动的速度和加速度都是连续的
下面以一个经过一个中间点的轨迹为例:
t
0
—
t
1
t_0—t_1
t0—t1段:
t
1
—
t
f
t_1—t_f
t1—tf段:
方程组中存在着8个未知数。
关于三个点三个位置的方程组:
在这个例子中起点和终点的速度为零:
(注意这里不是只可以取零,若是求一段连续的运动中的其中一段轨迹,这里的起点和终点速度并非零,根据题目具体取值)
中间点的速度和加速度:
代数解法:
命
△
t
1
△t_1
△t1 =
△
t
2
△t_2
△t2,8个方程联立:
矩阵解法: