背景与发展前景
在此背景下,对于海洋能的开发与使用尤为重要,尤其是用海洋能发电。在此,我想阐述一下我对海洋能发电前景的探讨与实际使用研究。
I. 海洋能发电的缺点
海洋能作为一种尚未开发完全的新能源,其开发价值和人们用电的需求不言而喻。但用海洋能发电也有一些缺点。
(1)发电不稳定
现今,海洋能发电通常是用潮汐能、波浪能以及温差能等方式发电。但这些发电方式,都会受天气、气候、时间等因素影响,导致发电效率受限,发电不稳定。
(2)海洋能选址困难
建造发电站是一项耗资巨大的工程。譬如建造如风车等风力发电装置,需要对地形地势进行多次勘探和考察,对地方的风力稳定性和气候变化程度进行研究,从而才能投资建造发电站。对于海洋能发电站亦是如此,对于地址的选择尤为重要,需要检测当地的潮汐变化和温差。
(3)海洋能开发技术薄弱
中国在海洋能源领域的技术研发缺乏自主创新能力,许多关键技术仍处在“跟跑”的状态。在海试之前,很多海洋能源设备都没有进行足够的实验室样机 试验,从而导致相关设备不具备良好的稳定性,并且在试验过程中还需要做好设备的维修和维护工作,进一步增加了设备研发成本,对示范成效也产生一定的影响。此外,中国单个机组的总发电量偏低,与发达国家相比仍存在一定差距。
II.针对缺点的海洋能发电应对方案和想法
(1)做基于神经网络的海洋能发电配置优化
由于海洋能发电受多种因素影响,导致发电功率不稳定,存在波动性的问题。针对此问题,我认为可以参考光伏发电同样不稳定的解决方案,采用模糊神经网络来完成发电功率最大点的预测,从而进行电网的配置优化,在发电、输电等方面进行资源调度与分配使用。在利用模糊神经网络来解决光伏发电的不稳定问题上,利用多层 BP 神经网络强大的推理能力,直接预测出光伏发电系统最大功率点电压;再通过模糊控制算法,利用专家经验,实时调整占空比,推算出光伏发电系统最大功率点,从而提高系统的泛化能力和鲁棒性,进而有效抑制光伏发电系统输出的间歇性和随机性,为并网光伏发电系统的安全运行提供保障。我认为在海洋能发电上也能采用这种方法,拿潮汐能发电为例,通过实时监测每日的发电功率变化,用模糊神经网络进行预测,再通过调整神经网络参数,进行配电配置的优化。
(2)开发检测海洋能发电选址的机器进行预测
对于不同位置的潮汐能大小不同,温差不一,从而开发一种测量温差的及装载力传感器的装置进行海洋能发电选址的检测。由于通过温差能发电需要大于十八度以上的温差,从而可以通过具体深度测量具体的温差值,再进行选址。