deepseek-r1模型使用ollama本地部署,并联网

以下是安装deepseek-r1模型本地化。

第一步:打开ollama官网下载软件。我的是windows电脑。下载后和正常软件一样的安装方法。安装后右下角会有羊驼的标志,证明安装成功了。

Ollama

第二步:设置环境变量,以后模型都下载到你设置的文件夹内。

第三步:下载模型,并运行。在cmd中执行以下命令下载模型。

ollama run deepseek-r1:8b

下载后就可以对话了。但是比较丑,需要UI界面,也需要联网。

以下是UI和联网的方法。

 第一步:①打开下面的网址,获取浏览器插件。

### 如何配置 Ollama 进行 DeepSeek-R1 模型的在线训练 #### 准备工作 为了能够顺利地配置使用 Ollama 来进行 DeepSeek-R1 模型的在线训练,需先完成环境准备。这包括但不限于安装必要的软件包和服务。 确保已经按照官方指南完成了 Dify 和 Ollama 的安装,启动了 `ollama` 服务[^1]: ```bash ollama serve ``` #### 获取模型 接着获取所需的 DeepSeek-R1 模型版本。对于较低硬件配置的情况,可以选择较小规模的模型变体,例如7B参数量的版本,在 RTX2060 显卡上也能正常运行[^3]: ```bash ollama run deepseek-r1:7b ``` 此命令会自动下载大约4GB大小的模型文件,默认存储路径位于系统的 C 盘根目录下。 #### 设置训练环境 目前公开的信息主要集中在如何部署和调用预训练好的 DeepSeek-R1 模型,而有关于具体的在线微调或继续训练指导相对较少。不过基于一般的大规模语言模型训练流程以及现有资料推测,可能涉及以下几个方面的工作: - **数据集准备**: 收集适合目标任务的数据集,将其转换成适用于模型输入格式。 - **调整超参数**: 根据实际应用场景设定合理的批量大小(batch size)、学习率(learning rate)等关键参数。 - **编写训练脚本**: 利用支持框架(如 PyTorch 或 TensorFlow)构建自定义训练循环逻辑,同时集成 Ollama 提供的相关接口用于加载基础模型权重及保存更新后的状态。 值得注意的是,上述操作假设读者具备一定水平的技术背景知识,特别是熟悉 Python 编程语言及其生态系统内的常用工具库;另外还需要了解基本的概念和技术细节关于大规模机器学习项目开发周期管理等内容。 由于涉及到较为复杂的工程实践环节,建议参考官方文档或其他社区资源进一步深入研究特定主题领域内最佳实践经验分享文章。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值