图书数据清洗——实验报告

本文详细介绍了图书数据清洗的概念,包括数据清洗的必要性、理论基础以及实际操作步骤,如去除价格符号、提取数值、处理出版信息和用户隐私等。通过实例展示了清洗过程,以确保数据质量和隐私安全,为后续数据分析和可视化做准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

图书数据清洗

1.图书数据清洗的概念

2.图书数据清洗及可视化的理论基础

3.图书数据清洗的现状及问题

4.图书数据清洗实验报告

1 读数据表

2 提取价格数值

3 提取评论数

4 提取星级数值

5 星级数值除以20

6 出版信息字符串分割

7 书名去掉【】

8 书名去掉[]

9 书名字符串分割

10 删除不需要的数据列

11 数据字段重命名


图书数据清洗

1.图书数据清洗的概念

图书数据清洗是指对图书相关的数据进行预处理和整理,以确保数据的质量和准确性。清洗过程包括去除重复数据、处理缺失值、纠正错误数据、标准化数据格式等,以便后续的数据分析和可视化工作。

2.图书数据清洗及可视化的理论基础

数据清洗是指对收集到的原始数据进行预处理、规范化和整理,以便于后续的分析和可视化。常见的数据清洗技术包括数据去重、填充缺失值、处理异常值、处理重复值等。数据清洗的理论基础包括数据预处理方法、数据质量评估标准和数据清洗算法等。

3.图书数据清洗的现状及问题

数据质量问题:原始图书数据往往存在缺失值、错误值、重复值等质量问题,这就需要进行数据清洗。然而,清洗过程中可能会遇到一些困难,例如如何确定缺失值的填充方式、如何处理异常值等。

数据整合问题:图书数据来自不同渠道和来源,可能存在格式不统一、命名不一致等问题,这给数据的整合带来了困难。特别是在进行图书分类和标注时,需要解决不同分类系统之间的映射问题。

用户隐私问题:图书数据往往涉及用户的阅读行为和个人偏好等敏感信息。在进行数据可视化时,需要注意保护用户隐私,不能泄露个人身份和具体阅读内容。

4.图书数据清洗实验报告

1 读数据表

首先,我们读取原始数据。可以看出原始数据中有许多问题,例如当前价格带有人民币符号'¥&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值