数电实验:利用74ls00和74ls86实现全加器

目录

一、实验目的

二、实验内容

三、实验步骤、数据记录及处理

四、实验心得


 

一、实验目的

熟悉数字电路实验箱的使用,熟悉ttl系列门元件芯片的使用,能够利用分立元器件门电路,搭建特定组合逻辑电路。

二、实验内容

验证741s00和74ls86的功能,利用74ls00 和74ls86  实现1位全加器和全减器。

三、实验步骤、数据记录及处理

1.实验仪器的结构图

db15d6efe9424c04b98282c813b84524.png

        74ls00是由4 组 俩输入的与非门所构成,7 脚GND接地,14脚VCC接+5V,其中1,2为输入端,3为输出端,4,5输入端,6为输出端,等

 

5f7b12d9c4f94fa28b2610d9d372bd58.png

         74ls86是由4 组 俩输入的异或门所构成,7 脚GND接地,14脚VCC接+5V,其中1,2为输入端,3为输出端,4,5输入端,6为输出端,等

2.设计全加器

        在将三个多位二进制数相加时,除了最低位以外,每一位都考虑来自低位的进位,即将三个对应位的加数和来自低位的进位3个数相加。这种运算称为全加,所用的电路称为全加器。

          用异或门(74LS86)和与非门(74LS00)组成全加器,并测试全加器的逻辑功能。

设计方法:

  1. 分析电路图

9f4e392db79a45f89d6d1b5995372e63.png

 

函数表达式:

Si = A ⨁B⨁C;

Ci+1 = (A⨁B)C + AB;

 

 

 

2.根据二进制加法运算规则列出1位全加器的真值表。

 

7cb0e27a3b02471f9d9c5ad3ef7d0e86.png

 

3.实验电路的设计图:    三位全加器

437fce46847044c698a141a5f885e6a1.png

 

 

四、实验心得

        在进行实验时,应先确认74LS00、74LS86的功能完好,而后仔细检查芯片的引脚连接,确保连接正确,以避免电路故障。

        实验有助于加深对异或门和与非门对电路设计的理解,同时也提供了一个实际的编程和模拟测试经验。为了更好地理解电路的运作,我们可以尝试设计更复杂的电路或改进现有的设计。实验中要确保安全,特别是在使用电源和连接线时,避免短路和电击风险。

 

                                 ( 看到这儿,老铁不来个  一键三连,支持支持)

                                              多多重复,百炼成钢

                                    相信今天的讲解会使你学会这道题!!!

 

<think>嗯,用户问的是关于74283芯片实现十进制转二进制的接线图举例。首先,我得回忆一下74283的功能。74283是四位全加法器,能执行两个四位二进制的加法,并输出四位以及一个进位。那十进制转二进制的话,通常需要将十进制的每一位转换成BCD码,然后通过加法器组合起来。 不过,直接用74283来做十进制到二进制的转换,可能涉及到将BCD码转换为二进制。比如,对于两位的十进制,比如35,转换成二进制的话是100011。这时候需要把十位的3(BCD是0011)乘以10,加上个位的5(0101),即3*10 +5=35。但用二进制加法的话,3*10其实等于30,对应的二进制是11110,然后加上5的0101,得到100011。那怎么用74283来实现这个过程呢? 可能需要将十位的BCD码转换成对应的二进制值,也就是乘以10,这相当于乘以8加上乘以2,也就是左移3位加上左移1位。这时候可能需要多个74283来组合。比如,十位的0011(3)需要乘以10,可以分解为(0011 << 3) + (0011 << 1) = 24 + 6 = 30。然后再加上个位的5(0101),得到35的二进制100011。 这样的话,接线图可能需要两个74283:第一个用来计算十位乘以10的部分,第二个用来加上个位的值。首先,将十位的BCD码连接到第一个74283的A输入,低位输入可能需要设置为0,或者通过移位来实现乘以8乘以2的操作。不过,具体如何连接可能需要更仔细的分析。 或者,是否有一种更直接的方法?比如,将十位个位的BCD码分别转换为二进制,然后相加。比如十位是3,转换为0011,即十进制的3,但需要乘以10。这时候可能需要用加法器来实现乘以10的操作。比如,3*10=30,可以通过3*8 + 3*2,也就是左移三位(乘以8)加上左移一位(乘以2)。这时候可能需要将十位的左移三位左移一位,然后相加,再加上个位的。 具体到74283的接线,可能需要将十位的BCD码(假设是四位)的高位连接到第一个加法器的A输入,然后通过移位得到乘以8乘以2的值,再利用加法器进行相加,再加上个位的BCD码。但这里需要确保BCD码是有效的,比如不超过9,否则可能会有进位的问题。 可能需要更详细的步骤,例如:两位十进制转换为二进制,假设十位是D1(BCD码四位),个位是D0(四位BCD),那么二进制结果应该是D1×10 + D0。而D1×10可以拆解为D1×8 + D1×2。因此,可以用两个加法器:第一个加法器计算D1×8(左移三位)D1×2(左移一位)的,然后将这个与D0相加,得到最终的二进制。 例如,D1=0011(3),D1×8就是0011左移三位得到0011000(24),D1×2是0011左移一位得到0110(6)。将246相加得到30,再加上D0的0101(5),得到35(100011)。 用74283的话,每个加法器可以处理四位,所以可能需要级联多个加法器来处理更大的位。比如,计算D1×8可能需要超过四位,所以需要连接进位位。例如,D1×8是四位左移三位,即变成七位,但74283只能处理四位,所以可能需要多个加法器来处理高位低位。 不过,这样的接线图可能比较复杂,特别是对于两位十进制转换可能需要多个74283芯片。例如,首先处理D1×8D1×2的加法,得到中间结果,然后再加D0。每个步骤都需要一个加法器,可能还需要处理进位。 总结来说,接线图的大致步骤可能包括: 1. 将十位的BCD码D1左移三位(相当于×8)得到高四位低三位,可能需要扩展位。 2. 将D1左移一位(相当于×2)得到另一个四位值。 3. 使用第一个74283将这两个移位后的结果相加,得到D1×10。 4. 然后使用第二个74283将D1×10的结果与个位D0相加,得到最终的二进制值。 不过,具体接线需要处理位扩展进位的问题,可能需要多个加法器级联。例如,D1×8可能需要高位加法器处理进位,而D1×2可能在低四位。然后相加这两个结果,再加上D0。 可能还需要其他逻辑门来处理移位操作,因为单纯的移位可以通过线路连接来实现,例如左移三位就是将四位中的每一位连接到更高的三位之后,低位补零。 例如,D1=0011,左移三位变成0011000,即24,但四位加法器只能处理四位,所以可能需要拆分高低位。或者,使用两个74283来处理高位低位的加法。 这整个过程可能比较复杂,特别是对于刚接触的学生来说,可能需要分步解释,并给出具体的接线图示例,比如使用两个74283一些移位线路来实现。 不过,用户可能希望一个具体的例子,比如如何将两位十进制如35转换为二进制,使用74283芯片的连接方式。需要画出各个输入端的连接,以及进位位的处理。 因此,在回答中需要分步骤说明,首先处理十位的转换,然后加上个位,并给出对应的接线方式,可能包括移位操作如何通过物理连接实现,以及加法器的级联方式。</think>好的,我将通过一个具体示例分步骤说明如何用74283芯片将两位十进制转换为二进制。以下以输入十进制"35"(BCD码:十位0011,个位0101)为例: --- ### **步骤1:理解74283芯片功能** - 74283是四位二进制全加器,可执行 $A_3A_2A_1A_0 + B_3B_2B_1B_0 + C_{in} = S_3S_2S_1S_0 + C_{out}$。 - 输入/输出均为二进制,需将十进制BCD码转换为二进制。 --- ### **步骤2:分解十进制转换逻辑** 十进制 $D_{10} = D_1 \times 10 + D_0$(例如:$35 = 3 \times 10 + 5$): 1. **十位 $D_1$ 处理**:需计算 $D_1 \times 10 = D_1 \times 8 + D_1 \times 2$。 2. **个位 $D_0$ 处理**:直接取 $D_0$ 的二进制值。 --- ### **步骤3:构建路逻辑** #### **1. 计算 $D_1 \times 8$ $D_1 \times 2$** - $D_1 \times 8$:将BCD码左移3位(即末尾补3个0)。 - 例如:$0011 \rightarrow 0011\,000$(即24)。 - $D_1 \times 2$:将BCD码左移1位(末尾补1个0)。 - 例如:$0011 \rightarrow 0110$(即6)。 #### **2. 加法器级联** - **第一级加法器**:计算 $D_1 \times 8 + D_1 \times 2 = 24 + 6 = 30$。 - **第二级加法器**:将结果与个位 $D_0$ 相加:$30 + 5 = 35$。 --- ### **步骤4:具体接线图(以35为例)** #### **输入信号** - 十位 $D_1 = 0011$(BCD码3),个位 $D_0 = 0101$(BCD码5)。 #### **路连接** 1. **计算 $D_1 \times 8$(左移3位)**: - 输入:$D_1 = 0011$,左移3位后为 $0011\,000$(需扩展为7位)。 - 拆分高低位:高位 $0011$,低位 $000$。 2. **计算 $D_1 \times 2$(左移1位)**: - 输入:$D_1 = 0011$,左移1位后为 $0110$(4位)。 3. **第一级加法器(计算 $D_1 \times 10$)**: - 输入A:$0011\,000$ 的高4位 $0011$。 - 输入B:$D_1 \times 2 = 0110$。 - 输出:$0011 + 0110 = 1001$(进位需处理,实际结果为 $0011\,000 + 0110 = 0011\,110$)。 4. **第二级加法器(加个位 $D_0$)**: - 输入A:第一级输出的低位 $1110$。 - 输入B:个位 $D_0 = 0101$。 - 输出:$1110 + 0101 = 10011$(即二进制35)。 --- ### **接线图示意图** ``` 十位D1=0011(BCD) │ ├─左移3位─→ 0011000 → 高位0011 (A输入) │ 低位000 (补零) └─左移1位─→ 0110 (B输入) │ 第一级加法器 (74283-1) 输出:S=1001, C_out=0 → 实际值0011110(30) │ ├─低位1110与个位D0=0101相加 │ 第二级加法器 (74283-2) 输出:10011 → 二进制35(100011) ``` --- ### **关键点** 1. **左移操作**:通过物理连线实现(如D1高位接A3-A0,低位补零)。 2. **级联进位**:需处理加法器间的进位信号(如C_in接地或接高位)。 3. **验证结果**:最终输出应为二进制100011(35)。 希望这个示例能帮助您理解如何用74283实现十进制到二进制的转换!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值