植物检测与分类检测系统源码分享
[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
1.研究背景与意义
项目参考AAAI Association for the Advancement of Artificial Intelligence
项目来源AACV Association for the Advancement of Computer Vision
研究背景与意义
随着全球人口的不断增长和城市化进程的加快,植物的保护与管理变得愈发重要。植物不仅是生态系统的重要组成部分,也是人类生存和发展的基础。为了有效地监测和管理植物资源,科学家们逐渐认识到计算机视觉技术在植物检测与分类中的潜力。近年来,深度学习技术的迅猛发展,尤其是目标检测算法的不断演进,为植物识别和分类提供了新的解决方案。其中,YOLO(You Only Look Once)系列算法因其高效性和实时性而备受关注,尤其是最新版本YOLOv8在目标检测领域展现出了卓越的性能。
本研究旨在基于改进的YOLOv8算法,构建一个高效的植物检测与分类系统。该系统将应用于“Plants Rythmes”数据集,该数据集包含2800张图像,涵盖了植物和其他植物类的两个主要类别。通过对这一数据集的深入分析与处理,研究将重点探讨如何提高植物检测的准确性和效率,以满足实际应用中的需求。
在植物检测与分类的研究中,数据集的质量和多样性至关重要。虽然“Plants Rythmes”数据集的图像数量相对较少,但其涵盖的类别具有代表性,能够为模型的训练提供基本的样本。通过对该数据集的扩展和增强,研究将探索如何在有限的数据条件下提升模型的泛化能力。此外,改进YOLOv8算法的结构和参数设置,将有助于提高模型在植物检测中的表现,尤其是在复杂背景和不同光照条件下的鲁棒性。
本研究的意义不仅在于推动植物检测技术的发展,更在于为生态保护和植物资源管理提供实用工具。通过实现高效的植物检测与分类系统,相关部门可以更好地监测植物生长状况,及时发现病虫害,进而采取相应的保护措施。此外,该系统还可以为农业生产提供数据支持,帮助农民优化种植策略,提高作物产量。
在学术层面,本研究将为植物识别领域的深度学习应用提供新的视角和方法。通过对YOLOv8算法的改进与优化,研究将丰富目标检测技术在生态学和植物学中的应用案例,推动相关领域的交叉研究。同时,研究结果也将为后续的相关研究提供基础数据和理论支持,促进植物检测技术的进一步发展。
综上所述,基于改进YOLOv8的植物检测与分类系统的研究,不仅具有重要的理论价值和应用前景,也为生态保护和农业发展提供了新的思路和方法。通过这一研究,期望能够为植物资源的可持续管理贡献一份力量,同时推动计算机视觉技术在生物科学领域的应用与发展。
2.图片演示
注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)
(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。
(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。
(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。
(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。
另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。
3.视频演示
4.数据集信息展示
4.1 本项目数据集详细数据(类别数&类别名)
nc: 2
names: [‘plant’, ‘plants’]
4.2 本项目数据集信息介绍
数据集信息展示
在本研究中,我们使用了名为“Plants Rythmes”的数据集,以支持对植物检测与分类系统的改进,特别是针对YOLOv8模型的训练。该数据集专注于植物的视觉特征,旨在为计算机视觉领域提供丰富的样本和标注,以提升模型在植物识别任务中的准确性和鲁棒性。数据集的类别数量为2,具体类别包括“plant”和“plants”,这两个类别的设置旨在涵盖植物的多样性和复杂性,确保模型能够在不同的场景中有效识别和分类。
“Plants Rythmes”数据集的构建过程考虑了多种植物的形态特征、颜色变化和生长环境等因素,确保数据的多样性和代表性。数据集中包含的图像来源于不同的生态环境,涵盖了从室内植物到户外植物的多种场景。这种多样性不仅增强了数据集的实用性,也为模型的训练提供了丰富的上下文信息,使其能够更好地适应实际应用中的各种情况。
在数据集的标注过程中,采用了精确的边界框标注技术,确保每个植物实例都被准确地框定。这种标注方式不仅提高了模型在检测任务中的性能,也为后续的分类任务奠定了基础。通过对每个图像中植物的细致标注,研究者能够更深入地分析植物的特征,进而优化YOLOv8模型的参数设置和结构设计。
此外,数据集还考虑到了植物在不同生长阶段和不同环境条件下的表现。例如,某些植物在阳光充足的环境中与在阴暗环境中的表现可能截然不同,这种变化被充分考虑并体现在数据集中。这种环境适应性使得训练出的模型不仅能够识别植物的种类,还能对其生长状态进行初步判断,为实际应用提供了更为全面的信息。
在训练过程中,数据集的有效利用将直接影响到模型的性能表现。通过精心设计的训练方案,结合“Plants Rythmes”数据集的多样性,研究者能够在不同的训练阶段不断调整模型参数,以实现最佳的检测和分类效果。同时,数据集的规模和质量也为模型的泛化能力提供了保障,使其能够在未见过的样本上依然保持较高的识别率。
总之,“Plants Rythmes”数据集不仅为本研究提供了丰富的训练样本,也为改进YOLOv8模型的植物检测与分类系统奠定了坚实的基础。通过对该数据集的深入分析和有效利用,我们期望能够实现更高效、更准确的植物识别系统,为植物科学研究、农业监测以及生态保护等领域提供有力的技术支持。
5.全套项目环境部署视频教程(零基础手把手教学)
5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)
6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)
6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)
7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)
8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)
由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:
9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)
图9.1.系统支持检测结果表格显示
图9.2.系统支持置信度和IOU阈值手动调节
图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)
图9.4.系统支持摄像头实时识别
图9.5.系统支持图片识别
图9.6.系统支持视频识别
图9.7.系统支持识别结果文件自动保存
图9.8.系统支持Excel导出检测结果数据
10.原始YOLOV8算法原理
原始YOLOv8算法原理
YOLOv8算法是由Ultralytics团队在YOLOv5的基础上发展而来的,旨在提升目标检测的精度和速度。该算法在2023年1月正式发布,结合了过去两年半中在实际应用中获得的各种改进。YOLOv8不仅继承了YOLO系列的核心思想,还在多个方面进行了创新和优化,使其在目标检测领域表现出色。
首先,YOLOv8在数据预处理方面进行了细致的考量。虽然Mosaic数据增强技术在提升模型鲁棒性和泛化能力方面表现良好,但其在一定程度上可能会破坏数据的真实分布,导致模型学习到不良信息。因此,YOLOv8在训练的最后10个epoch中停止使用Mosaic增强,以确保模型能够更好地捕捉真实数据的特征。这一改进体现了YOLOv8团队对数据质量的重视,旨在提升模型的学习效果。
在网络结构上,YOLOv8的主干网络与YOLOv5相似,但进行了重要的调整。C3模块被替换为C2f模块,后者在设计上引入了YOLOv7中的ELAN思想,增加了更多的跳层连接。这种结构的变化使得梯度流信息更加丰富,有助于模型在训练过程中更有效地传递信息。同时,C2f模块的轻量化设计确保了模型的计算效率,减少了执行时间。此外,YOLOv8依然保留了快速空间金字塔池化(SPPF)模块,以增强特征提取能力。
在颈部网络(Neck)中,YOLOv8同样将所有的C3模块更改为C2f模块,并删除了两处上采样之前的卷积连接层。这一改动进一步简化了网络结构,提高了特征融合的效率。YOLOv8采用了FPN(特征金字塔网络)和PAN(路径聚合网络)结构,确保来自不同尺度的特征图能够有效融合,从而提升对多尺度目标的检测能力。
在头部网络(Head)中,YOLOv8引入了解耦头的概念,采用两条并行的分支分别提取类别和位置特征。这种设计使得分类任务和定位任务能够独立优化,进而提高了模型的收敛速度和预测精度。具体而言,分类任务更关注特征图中提取到的特征与已有类别的相似性,而定位任务则侧重于边界框与真实框之间的位置关系。通过这种方式,YOLOv8在目标检测的精度和速度上都取得了显著提升。
值得注意的是,YOLOv8采用了无锚框结构,直接预测目标的中心,并通过任务对齐学习(TAL)来区分正负样本。这一策略通过引入分类分数和IOU的高次幂乘积作为衡量任务对齐程度的指标,确保模型在分类和定位任务中都能取得良好的表现。通过对正负样本的精细处理,YOLOv8能够更好地平衡分类和定位的损失函数,从而提升整体检测性能。
在损失函数方面,YOLOv8引入了Varifocal Loss(VFL)和CIoU Loss与DFL Loss的组合形式。VFL通过不对称参数对正负样本进行加权,使得高质量的正样本对损失的贡献更大,而负样本的影响则被有效降低。这种策略使得模型在训练过程中能够更加专注于高质量样本,从而提升了AP(平均精度)指标。
YOLOv8在检测结果上也表现出色,尤其是在COCO数据集上的表现尤为突出。通过对比不同尺寸的模型,YOLOv8在保持较小参数量的同时,取得了更高的精度和更快的推理速度。这一特性使得YOLOv8在实时性和准确性之间找到了良好的平衡,适合于各种实际应用场景,尤其是在需要快速响应的目标检测任务中。
综合来看,YOLOv8算法在多个方面进行了创新和优化,从数据预处理到网络结构,再到损失函数的设计,都体现了对目标检测任务的深刻理解和实践经验的积累。通过这些改进,YOLOv8不仅在精度和速度上超越了前代模型,还为未来的目标检测研究提供了新的思路和方向。无论是在学术研究还是实际应用中,YOLOv8都展现出了广泛的应用潜力和研究价值。
11.项目核心源码讲解(再也不用担心看不懂代码逻辑)
11.1 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\ops_dcnv3\functions\dcnv3_func.py
以下是对代码中最核心部分的提取和详细中文注释:
import torch
import torch.nn.functional as F
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
class DCNv3Function(Function):
@staticmethod
@custom_fwd
def forward(ctx, input, offset, mask, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group, group_channels, offset_scale, im2col_step, remove_center):
# 保存卷积参数到上下文中,以便在反向传播时使用
ctx.kernel_h = kernel_h
ctx.kernel_w = kernel_w
ctx.stride_h = stride_h
ctx.stride_w = stride_w
ctx.pad_h = pad_h
ctx.pad_w = pad_w
ctx.dilation_h = dilation_h
ctx.dilation_w = dilation_w
ctx.group = group
ctx.group_channels = group_channels
ctx.offset_scale = offset_scale
ctx.im2col_step = im2col_step
ctx.remove_center = remove_center
# 准备参数并调用DCNv3的前向计算
args = [input, offset, mask, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group, group_channels, offset_scale, ctx.im2col_step]
if remove_center:
args.append(remove_center)
output = DCNv3.dcnv3_forward(*args) # 调用DCNv3的前向函数
ctx.save_for_backward(input, offset, mask) # 保存输入以便反向传播使用
return output
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
# 从上下文中恢复保存的张量
input, offset, mask = ctx.saved_tensors
# 准备反向传播的参数
args = [input, offset, mask, ctx.kernel_h, ctx.kernel_w, ctx.stride_h, ctx.stride_w, ctx.pad_h, ctx.pad_w, ctx.dilation_h, ctx.dilation_w, ctx.group, ctx.group_channels, ctx.offset_scale, grad_output.contiguous(), ctx.im2col_step]
if ctx.remove_center:
args.append(ctx.remove_center)
# 调用DCNv3的反向计算
grad_input, grad_offset, grad_mask = DCNv3.dcnv3_backward(*args)
return grad_input, grad_offset, grad_mask, None, None, None, None, None, None, None, None, None, None, None, None, None
def dcnv3_core_pytorch(input, offset, mask, kernel_h, kernel_w, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, group, group_channels, offset_scale, remove_center):
# 对输入进行填充
input = F.pad(input, [0, 0, pad_h, pad_h, pad_w, pad_w])
N_, H_in, W_in, _ = input.shape # 获取输入的形状
_, H_out, W_out, _ = offset.shape # 获取偏移量的形状
# 计算参考点和采样网格
ref = _get_reference_points(input.shape, input.device, kernel_h, kernel_w, dilation_h, dilation_w, pad_h, pad_w, stride_h, stride_w)
grid = _generate_dilation_grids(input.shape, kernel_h, kernel_w, dilation_h, dilation_w, group, input.device)
# 计算采样位置
sampling_locations = (ref + grid * offset_scale).repeat(N_, 1, 1, 1, 1)
if remove_center:
sampling_locations = remove_center_sampling_locations(sampling_locations, kernel_w=kernel_w, kernel_h=kernel_h)
sampling_locations = sampling_locations.flatten(3, 4)
# 使用grid_sample进行采样
sampling_input_ = F.grid_sample(input.view(N_, H_in * W_in, group * group_channels).transpose(1, 2).reshape(N_ * group, group_channels, H_in, W_in), sampling_locations, mode='bilinear', padding_mode='zeros', align_corners=False)
# 计算输出
mask = mask.view(N_, H_out * W_out, group, -1).transpose(1, 2).reshape(N_ * group, 1, H_out * W_out, -1)
output = (sampling_input_ * mask).sum(-1).view(N_, group * group_channels, H_out * W_out)
return output.transpose(1, 2).reshape(N_, H_out, W_out, -1).contiguous()
代码核心部分分析:
-
DCNv3Function:
- 该类实现了自定义的前向和反向传播函数,利用了PyTorch的
Function
类。 forward
方法负责执行前向计算,保存必要的参数以供反向传播使用。backward
方法实现了反向传播,计算输入、偏移和掩码的梯度。
- 该类实现了自定义的前向和反向传播函数,利用了PyTorch的
-
dcnv3_core_pytorch:
- 该函数实现了DCNv3的核心逻辑,包括输入的填充、参考点和采样网格的计算、采样位置的生成,以及最终的输出计算。
- 使用
F.grid_sample
进行双线性插值采样。
-
辅助函数:
_get_reference_points
和_generate_dilation_grids
等函数用于计算参考点和采样网格,确保在不同的卷积参数下正确生成采样位置。
总结:
以上代码实现了DCNv3(Deformable Convolutional Networks v3)的前向和反向传播功能,核心在于自定义的Function
类和dcnv3_core_pytorch
函数的实现,结合了PyTorch的自动求导机制和自定义操作。
这个文件 dcnv3_func.py
是一个实现了 DCNv3(Deformable Convolutional Networks v3)功能的 PyTorch 自定义操作的代码。DCNv3 是一种改进的可变形卷积方法,旨在增强卷积神经网络在处理形状变化和复杂物体时的能力。
文件开头包含版权声明和导入必要的库。使用了 torch
和 torch.nn.functional
,以及一些 PyTorch 的自动求导功能。特别地,使用了 custom_fwd
和 custom_bwd
装饰器来定义前向和反向传播的自定义操作。
DCNv3Function
类继承自 Function
,并实现了前向和反向传播的逻辑。在前向传播中,首先保存了一些参数,然后调用了 DCNv3 的前向函数来计算输出,并将输入、偏移量和掩码保存以供反向传播使用。反向传播中,使用保存的张量和之前的参数来计算梯度。
此外,文件中还定义了一些辅助函数。_get_reference_points
函数用于计算参考点,这些点在可变形卷积中用于确定卷积核的位置。_generate_dilation_grids
函数生成膨胀网格,用于在卷积过程中对输入进行采样。remove_center_sampling_locations
函数则用于去除中心采样位置,以便在某些情况下优化计算。
dcnv3_core_pytorch
函数是 DCNv3 的核心实现,负责处理输入、偏移量和掩码,并根据卷积核的参数进行相应的计算。它首先对输入进行填充,然后计算参考点和采样网格,最后通过 F.grid_sample
函数对输入进行采样,并结合掩码生成最终输出。
总的来说,这个文件实现了 DCNv3 的前向和反向传播逻辑,并提供了一些辅助函数来支持可变形卷积的计算。通过这些自定义操作,用户可以在 PyTorch 中方便地使用 DCNv3 功能,从而提高模型在处理复杂形状时的表现。
11.2 ui.py
import sys
import subprocess
def run_script(script_path):
"""
使用当前 Python 环境运行指定的脚本。
Args:
script_path (str): 要运行的脚本路径
Returns:
None
"""
# 获取当前 Python 解释器的路径
python_path = sys.executable
# 构建运行命令,使用 streamlit 运行指定的脚本
command = f'"{python_path}" -m streamlit run "{script_path}"'
# 执行命令
result = subprocess.run(command, shell=True)
# 检查命令执行结果,如果返回码不为0,表示出错
if result.returncode != 0:
print("脚本运行出错。")
# 主程序入口
if __name__ == "__main__":
# 指定要运行的脚本路径
script_path = "web.py" # 这里可以替换为实际的脚本路径
# 调用函数运行脚本
run_script(script_path)
代码核心部分注释:
-
导入模块:
sys
:用于获取当前 Python 解释器的路径。subprocess
:用于执行外部命令。
-
run_script
函数:- 接收一个参数
script_path
,表示要运行的 Python 脚本的路径。 - 使用
sys.executable
获取当前 Python 解释器的路径。 - 构建命令字符串,使用
streamlit
模块运行指定的脚本。 - 使用
subprocess.run
执行构建的命令,并检查返回码以判断脚本是否成功运行。
- 接收一个参数
-
主程序入口:
- 当脚本作为主程序运行时,指定要运行的脚本路径,并调用
run_script
函数执行该脚本。
- 当脚本作为主程序运行时,指定要运行的脚本路径,并调用
这个程序文件名为 ui.py
,其主要功能是通过当前的 Python 环境运行一个指定的脚本,具体是一个名为 web.py
的文件。程序首先导入了必要的模块,包括 sys
、os
和 subprocess
,以及一个自定义的 abs_path
函数,用于获取文件的绝对路径。
在 run_script
函数中,首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来运行脚本。接着,构建一个命令字符串,这个命令使用 streamlit
模块来运行指定的脚本。streamlit
是一个用于构建数据应用的库,通常用于快速开发 Web 应用。
然后,使用 subprocess.run
方法执行构建好的命令。这个方法会在新的 shell 中运行命令,并等待其完成。如果脚本运行过程中出现错误,返回的状态码将不为零,此时程序会打印出“脚本运行出错”的提示信息。
在文件的最后部分,使用 if __name__ == "__main__":
语句来确保当这个文件作为主程序运行时,以下代码才会被执行。这里指定了要运行的脚本路径 web.py
,并调用 run_script
函数来执行这个脚本。
总体来说,这个程序的主要目的是提供一个简单的接口,通过命令行运行一个 Streamlit 应用,并处理可能出现的错误。
11.3 code\ultralytics\data\explorer_init_.py
以下是代码中最核心的部分,并附上详细的中文注释:
# 导入必要的工具函数
from .utils import plot_query_result
# 定义模块的公开接口
__all__ = ["plot_query_result"]
代码注释说明:
-
from .utils import plot_query_result
:- 这一行代码从当前模块的
utils
文件中导入了plot_query_result
函数。这个函数可能用于绘制查询结果,具体功能取决于utils
模块的实现。
- 这一行代码从当前模块的
-
__all__ = ["plot_query_result"]
:- 这一行定义了模块的公开接口,表示当使用
from module import *
语句时,只有plot_query_result
函数会被导入。这是一种控制模块导出内容的方式,确保只暴露特定的功能给外部使用。
- 这一行定义了模块的公开接口,表示当使用
这个程序文件是一个Python模块,属于Ultralytics YOLO项目的一部分,遵循AGPL-3.0许可证。文件的主要功能是导入并暴露一个名为plot_query_result
的函数。
在文件的开头,有一个注释行,简单介绍了该项目的名称和许可证信息。接下来,使用from .utils import plot_query_result
语句从同一包中的utils
模块导入plot_query_result
函数。这意味着plot_query_result
函数在utils
模块中定义,并且可以在当前模块中使用。
最后,__all__
变量被定义为一个列表,包含了plot_query_result
,这表示当使用from module import *
语句导入该模块时,只会导入plot_query_result
这个函数。这是一种控制模块公共接口的方式,确保只有特定的功能被暴露给外部使用。
总体来说,这个文件的作用是将plot_query_result
函数从utils
模块导入并提供给其他模块使用,同时控制了模块的公共接口。
11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions_init_.py
当然可以!不过你提供的代码片段只有一行,且内容非常简短,主要是关于Ultralytics YOLO的版权信息和许可证声明。为了提供一个更有意义的示例,我将假设你希望了解Ultralytics YOLO的核心功能代码,并对其进行详细注释。以下是一个简化的YOLO模型推理代码示例:
import torch # 导入PyTorch库
# 定义YOLO模型类
class YOLO:
def __init__(self, model_path):
# 加载预训练的YOLO模型
self.model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
def predict(self, img):
# 对输入图像进行推理,返回检测结果
results = self.model(img)
return results
# 使用示例
if __name__ == "__main__":
# 创建YOLO对象,加载模型
yolo = YOLO('yolov5s.pt')
# 加载待检测的图像
img = 'path/to/image.jpg'
# 进行目标检测
results = yolo.predict(img)
# 打印检测结果
print(results)
代码详细注释:
-
导入库:
import torch # 导入PyTorch库
- 这里我们导入了PyTorch库,它是一个流行的深度学习框架,用于构建和训练神经网络。
-
定义YOLO模型类:
class YOLO:
- 创建一个名为
YOLO
的类,用于封装YOLO模型的相关功能。
- 创建一个名为
-
初始化方法:
def __init__(self, model_path): self.model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
__init__
方法是类的构造函数,用于初始化YOLO对象。- 使用
torch.hub.load
从Ultralytics的GitHub库加载预训练的YOLOv5模型(这里使用的是小型模型yolov5s
)。
-
预测方法:
def predict(self, img): results = self.model(img) return results
predict
方法接收一张图像作为输入,并使用加载的YOLO模型进行目标检测。results
变量存储检测结果,并将其返回。
-
使用示例:
if __name__ == "__main__": yolo = YOLO('yolov5s.pt') img = 'path/to/image.jpg' results = yolo.predict(img) print(results)
- 这部分代码是程序的入口,首先创建
YOLO
类的实例。 - 加载待检测的图像路径,并调用
predict
方法进行目标检测。 - 最后打印检测结果。
- 这部分代码是程序的入口,首先创建
以上是一个YOLO模型的简化实现及其详细注释,希望对你理解YOLO模型的使用有所帮助!如果你有更具体的代码片段需要处理,请提供详细内容。
这个程序文件的开头包含了一行注释,表明这是与Ultralytics YOLO相关的代码,YOLO是一种广泛使用的目标检测算法。注释中提到的“AGPL-3.0 license”表示该代码遵循AGPL-3.0许可证,这是一种开源许可证,允许用户自由使用、修改和分发代码,但要求在分发修改后的代码时也必须保持相同的许可证。
从文件名来看,这个文件是一个关于YOLOv8算法改进的源码集合和调试、加载、训练的教程,可能包含了一些实用的功能和方法,帮助用户更好地使用YOLOv8进行目标检测任务。虽然具体的代码内容没有展示,但可以推测这个文件可能是Ultralytics库的一部分,提供了一些基础的初始化功能,供其他模块或功能调用。
总的来说,这个文件是Ultralytics YOLO项目的一部分,旨在为用户提供YOLOv8算法的实现和使用指导。
11.5 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\ops.py
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torchvision
def non_max_suppression(
prediction,
conf_thres=0.25,
iou_thres=0.45,
classes=None,
agnostic=False,
multi_label=False,
labels=(),
max_det=300,
nc=0, # 类别数量(可选)
max_time_img=0.05,
max_nms=30000,
max_wh=7680,
):
"""
对一组边界框执行非最大抑制(NMS),支持掩码和每个框多个标签。
参数:
prediction (torch.Tensor): 形状为 (batch_size, num_classes + 4 + num_masks, num_boxes) 的张量,
包含预测的框、类别和掩码。张量格式应与模型输出格式一致,例如 YOLO。
conf_thres (float): 置信度阈值,低于该值的框将被过滤。有效值在 0.0 和 1.0 之间。
iou_thres (float): IoU 阈值,低于该值的框在 NMS 过程中将被过滤。有效值在 0.0 和 1.0 之间。
classes (List[int]): 要考虑的类别索引列表。如果为 None,则考虑所有类别。
agnostic (bool): 如果为 True,模型对类别数量不敏感,所有类别将被视为一个。
multi_label (bool): 如果为 True,每个框可能有多个标签。
labels (List[List[Union[int, float, torch.Tensor]]]): 标签列表,每个内部列表包含给定图像的先验标签。
max_det (int): NMS 后要保留的最大框数量。
nc (int, optional): 模型输出的类别数量。任何超过此数量的索引将被视为掩码。
max_time_img (float): 处理一张图像的最大时间(秒)。
max_nms (int): 传递给 torchvision.ops.nms() 的最大框数量。
max_wh (int): 最大框宽度和高度(像素)。
返回:
(List[torch.Tensor]): 长度为 batch_size 的列表,每个元素是形状为 (num_boxes, 6 + num_masks) 的张量,
包含保留的框,列为 (x1, y1, x2, y2, confidence, class, mask1, mask2, ...)。
"""
# 检查置信度和IoU阈值的有效性
assert 0 <= conf_thres <= 1, f'无效的置信度阈值 {conf_thres}, 有效值在 0.0 和 1.0 之间'
assert 0 <= iou_thres <= 1, f'无效的IoU {iou_thres}, 有效值在 0.0 和 1.0 之间'
# 如果预测是列表或元组,选择推理输出
if isinstance(prediction, (list, tuple)):
prediction = prediction[0] # 选择仅推理输出
device = prediction.device # 获取设备信息
bs = prediction.shape[0] # 批量大小
nc = nc or (prediction.shape[1] - 4) # 类别数量
nm = prediction.shape[1] - nc - 4 # 掩码数量
mi = 4 + nc # 掩码起始索引
xc = prediction[:, 4:mi].amax(1) > conf_thres # 置信度候选框
# 预测转置以便处理
prediction = prediction.transpose(-1, -2) # 形状转换
prediction[..., :4] = xywh2xyxy(prediction[..., :4]) # 将xywh格式转换为xyxy格式
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs # 初始化输出
for xi, x in enumerate(prediction): # 遍历每张图像的预测
x = x[xc[xi]] # 仅保留置信度高的框
# 如果没有框,继续处理下一张图像
if not x.shape[0]:
continue
# 将框、置信度和类别分开
box, cls, mask = x.split((4, nc, nm), 1)
# 处理多标签情况
if multi_label:
i, j = torch.where(cls > conf_thres)
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
else: # 仅保留最佳类别
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
# 过滤类别
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
n = x.shape[0] # 当前框的数量
if not n: # 如果没有框,继续
continue
if n > max_nms: # 如果框数量超过最大限制,按置信度排序并保留前max_nms个框
x = x[x[:, 4].argsort(descending=True)[:max_nms]]
# 执行批量NMS
c = x[:, 5:6] * (0 if agnostic else max_wh) # 类别偏移
boxes, scores = x[:, :4] + c, x[:, 4] # 计算框和分数
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
i = i[:max_det] # 限制检测数量
output[xi] = x[i] # 保存结果
return output # 返回处理后的结果
代码核心部分说明:
- 非最大抑制(NMS):这是目标检测中常用的后处理步骤,用于去除冗余的重叠框,保留最有可能的框。
- 置信度和IoU阈值:用于过滤低置信度的框和重叠度过高的框。
- 多标签处理:支持每个框可以有多个标签的情况。
- 输出格式:返回的结果包含了框的坐标、置信度、类别等信息,便于后续处理。
这个程序文件是YOLOv8算法的一部分,主要包含了一些实用的工具函数和类,用于处理图像、边界框、掩膜等操作。文件中定义了多个函数和一个上下文管理器类Profile
,其主要功能和实现细节如下:
首先,Profile
类用于性能分析,能够记录代码块的执行时间。它可以作为装饰器使用,也可以作为上下文管理器使用。通过__enter__
和__exit__
方法,用户可以在代码块执行前后自动记录时间,便于分析性能瓶颈。
接下来,文件中包含了一些用于边界框和坐标转换的函数,例如segment2box
、scale_boxes
、xyxy2xywh
等。这些函数能够将不同格式的边界框坐标进行转换,例如从(x1, y1, x2, y2)格式转换为(x, y, width, height)格式,或者将归一化的坐标转换为像素坐标。这些转换在目标检测和分割任务中非常重要,因为不同的模型和任务可能使用不同的坐标表示方式。
non_max_suppression
函数实现了非极大值抑制(NMS),这是目标检测中常用的技术,用于去除冗余的边界框。该函数支持多标签检测和掩膜处理,并且能够根据置信度和IoU阈值来过滤边界框。它的实现考虑了多种情况,如类别过滤、时间限制等,确保在处理大量边界框时的高效性。
此外,文件中还定义了一些用于处理掩膜的函数,如process_mask
和crop_mask
,这些函数可以对掩膜进行上采样和裁剪,以便与边界框相匹配。掩膜的处理在实例分割任务中尤为重要,因为它需要精确地定位目标的形状。
文件中还包含了一些辅助函数,如clean_str
用于清理字符串,convert_torch2numpy_batch
用于将PyTorch张量转换为NumPy数组等。这些函数提供了额外的便利,帮助用户在数据处理和模型输出后进行进一步的操作。
总的来说,这个文件为YOLOv8算法提供了许多基础的工具函数,方便用户在目标检测和分割任务中进行图像处理、边界框和掩膜的管理与转换。通过这些工具,用户可以更高效地实现模型的训练和推理。
11.6 train.py
以下是经过简化和注释的核心代码部分:
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first
class DetectionTrainer(BaseTrainer):
"""
基于检测模型的训练类,继承自BaseTrainer类。
"""
def build_dataset(self, img_path, mode="train", batch=None):
"""
构建YOLO数据集。
参数:
img_path (str): 图像文件夹的路径。
mode (str): 模式,'train'或'val',用户可以为每种模式自定义不同的数据增强。
batch (int, optional): 批次大小,适用于'rect'模式。默认为None。
"""
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) # 获取模型的最大步幅
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)
def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
"""构造并返回数据加载器。"""
assert mode in ["train", "val"] # 确保模式有效
with torch_distributed_zero_first(rank): # 在分布式训练中,仅初始化一次数据集
dataset = self.build_dataset(dataset_path, mode, batch_size)
shuffle = mode == "train" # 训练模式下打乱数据
if getattr(dataset, "rect", False) and shuffle:
LOGGER.warning("WARNING ⚠️ 'rect=True'与DataLoader的shuffle不兼容,设置shuffle=False")
shuffle = False
workers = self.args.workers if mode == "train" else self.args.workers * 2 # 设置工作线程数
return build_dataloader(dataset, batch_size, workers, shuffle, rank) # 返回数据加载器
def preprocess_batch(self, batch):
"""对图像批次进行预处理,包括缩放和转换为浮点数。"""
batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255 # 转换为浮点数并归一化
if self.args.multi_scale: # 如果启用多尺度
imgs = batch["img"]
sz = (
random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
// self.stride
* self.stride
) # 随机选择图像大小
sf = sz / max(imgs.shape[2:]) # 计算缩放因子
if sf != 1:
ns = [
math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
] # 计算新的形状
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) # 进行插值
batch["img"] = imgs
return batch
def get_model(self, cfg=None, weights=None, verbose=True):
"""返回YOLO检测模型。"""
model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1) # 创建检测模型
if weights:
model.load(weights) # 加载权重
return model
def plot_training_samples(self, batch, ni):
"""绘制带有注释的训练样本。"""
plot_images(
images=batch["img"],
batch_idx=batch["batch_idx"],
cls=batch["cls"].squeeze(-1),
bboxes=batch["bboxes"],
paths=batch["im_file"],
fname=self.save_dir / f"train_batch{ni}.jpg",
on_plot=self.on_plot,
)
def plot_metrics(self):
"""从CSV文件中绘制指标。"""
plot_results(file=self.csv, on_plot=self.on_plot) # 保存结果图像
代码说明:
- DetectionTrainer类:该类负责训练YOLO检测模型,继承自BaseTrainer。
- build_dataset方法:构建YOLO数据集,支持训练和验证模式。
- get_dataloader方法:创建数据加载器,支持多线程和数据打乱。
- preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。
- get_model方法:返回YOLO检测模型,并可选择加载预训练权重。
- plot_training_samples方法:绘制训练样本及其注释,便于可视化训练过程。
- plot_metrics方法:从CSV文件中绘制训练指标,帮助监控训练效果。
这个程序文件 train.py
是一个用于训练 YOLO(You Only Look Once)目标检测模型的 Python 脚本,继承自 BaseTrainer
类。文件中包含了一系列方法,主要用于构建数据集、获取数据加载器、预处理图像、设置模型属性、获取模型、验证模型、记录损失、显示训练进度、绘制训练样本和绘制训练指标等。
首先,DetectionTrainer
类定义了如何构建 YOLO 数据集。build_dataset
方法接收图像路径、模式(训练或验证)和批次大小,使用 build_yolo_dataset
函数构建数据集。数据集的构建会考虑到模型的步幅(stride),确保输入图像的尺寸符合要求。
接下来,get_dataloader
方法用于构建数据加载器。它会根据传入的模式(训练或验证)来初始化数据集,并设置是否打乱数据的顺序。训练模式下,数据会被打乱,而验证模式下则不会。
在 preprocess_batch
方法中,对每个批次的图像进行预处理,包括将图像转换为浮点数并缩放到 [0, 1] 的范围内。如果启用了多尺度训练,图像的尺寸会随机调整,以增强模型的鲁棒性。
set_model_attributes
方法用于设置模型的属性,包括类别数量和类别名称等。这样可以确保模型在训练时能够正确处理不同的类别。
get_model
方法用于返回一个 YOLO 检测模型实例。如果提供了权重文件,它会加载这些权重,以便进行迁移学习或继续训练。
get_validator
方法返回一个用于验证模型的 DetectionValidator
实例,以便在训练过程中评估模型的性能。
label_loss_items
方法用于返回带有标签的训练损失项的字典,这对于目标检测任务是必要的,因为它需要跟踪多个损失项(如边界框损失、分类损失等)。
progress_string
方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。
plot_training_samples
方法用于绘制训练样本及其标注,以便可视化训练过程中的数据。plot_metrics
方法则用于从 CSV 文件中绘制训练指标,生成可视化结果。
最后,plot_training_labels
方法创建一个带有标签的训练图,显示训练集中所有的边界框和类别信息,以便于分析模型的训练效果。
整体而言,这个文件实现了 YOLO 模型训练的核心功能,涵盖了数据处理、模型构建、训练过程监控和结果可视化等多个方面。
12.系统整体结构(节选)
整体功能和构架概括
该项目是一个基于YOLOv8的目标检测算法实现,包含了多个模块和功能,旨在提供一个全面的框架用于训练、验证和推理目标检测模型。项目的结构包括数据处理、模型定义、训练流程、可视化工具以及其他辅助功能。以下是项目的主要组成部分:
- 数据处理:包括数据加载、预处理和增强,确保输入数据符合模型要求。
- 模型定义:实现了YOLOv8及其变种(如DCNv3、RTDETR等)的模型结构,支持不同的目标检测任务。
- 训练与验证:提供了训练过程的管理,包括损失计算、进度监控和验证评估。
- 可视化工具:用于展示训练样本、损失曲线和模型性能指标,帮助用户理解模型的训练过程。
- 扩展功能:如可变形卷积、跟踪器、回调函数等,增强了模型的灵活性和适应性。
文件功能整理表
文件路径 | 功能描述 |
---|---|
ultralytics/nn/extra_modules/ops_dcnv3/functions/dcnv3_func.py | 实现DCNv3(可变形卷积网络v3)的前向和反向传播逻辑,提供辅助函数用于处理可变形卷积。 |
ui.py | 提供一个命令行接口,通过Streamlit运行指定的Web应用脚本。 |
ultralytics/data/explorer/__init__.py | 导入并暴露plot_query_result 函数,提供数据探索和可视化功能。 |
ultralytics/solutions/__init__.py | 初始化YOLOv8解决方案模块,可能包含算法改进和调试功能。 |
ultralytics/utils/ops.py | 提供多个工具函数和类,包括边界框处理、非极大值抑制、性能分析等,支持目标检测任务。 |
train.py | 负责YOLO模型的训练流程,包括数据集构建、模型设置、训练监控和结果可视化。 |
ultralytics/models/rtdetr/train.py | 训练RTDETR模型的脚本,具体实现细节未提供。 |
ultralytics/trackers/__init__.py | 初始化跟踪器模块,可能包含多种目标跟踪算法的实现。 |
ultralytics/utils/callbacks/__init__.py | 初始化回调函数模块,提供训练过程中的自定义回调功能。 |
ultralytics/models/fastsam/model.py | 实现FastSAM模型的定义和相关功能,具体实现细节未提供。 |
ultralytics/models/yolo/pose/__init__.py | 初始化YOLO姿态估计模块,可能包含与姿态估计相关的功能。 |
ultralytics/data/loaders.py | 提供数据加载器的实现,负责从数据源加载和预处理数据。 |
ultralytics/cfg/__init__.py | 初始化配置模块,可能包含模型和训练参数的配置功能。 |
以上表格整理了项目中各个文件的功能,提供了对项目整体结构和功能的清晰概述。
注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。
13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)
参考原始博客1: https://gitee.com/qunshansj/Plants-Rythmes632
参考原始博客2: https://github.com/VisionMillionDataStudio/Plants-Rythmes632