PCA降维算法总结以及matlab实现PCA(个人的一点理解)

转载请声明出处。by watkins song

鉴于本文比较混乱, 所以写了一个新的PCA的详细介绍, 请参见: http://blog.csdn.net/watkinsong/article/details/38536463 

两篇文章各有侧重, 对照看效果更加 o(∩∩)o..


PCA的一些基本资料

最近因为最人脸表情识别,提取的gabor特征太多了,所以需要用PCA进行对提取的特征进行降维。


本来最早的时候我没有打算对提取的gabor特征进行降维,但是如果一个图像时64*64,那么使用五个尺度八个方向的gabor滤波器进行滤波,这样提取的特征足足有64*64*5*8这么多,如果图像稍微大一点,比如128*128的图像,那么直接提取的特征就会几十万,所以不降维的话直接用SVM训练分类器是非常困难的。


所以在这段时间我就学习了一下PCA降维的基本原理和使用方法,网上给出的资料都比较乱,而且很不清楚,经过这几天的学习和测试,终于把调理弄清楚了,给大家分享一下,下面只是我对于PCA的个人理解,肯定有不对的地方,还请各位大牛多多指教。


下面先给出一下PCA的资料地址,都是我收集的:

http://hi.baidu.com/yicomrdztxbeiwd/item/913f28c05cf7ebc4994aa06f

http://blog.sciencenet.cn/blog-265205-544681.html

http://blog.csdn.net/mpbchina/article/details/7384425

h

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值