Towards Class-Oriented Poisoning Attacks Against Neural Networks 论文笔记

#论文笔记#

1. 论文信息

论文名称Towards Class-Oriented Poisoning Attacks Against Neural Networks
作者Bingyin Zhao
会议/出版社WACV 2022
pdf📄在线pdf
代码

基于类别的 availability attacks,不同于原本的 availability attacks 只考虑降低模型的整体准确率,本文还考虑了降低特定类的准确率或迫使模型将其他类都预测为目标类。

2. introduction

本文提出了面向类别的 availability attacks,通过梯度优化的方法生成 posion data。使用该 posion data 训练出的模型在特定类别上的准确率发生异常。

  • availability attacks 的优化目标,bi-level optimization problem

    arg ⁡ max ⁡ D p ∑ ( x , y ) ∈ D val  L [ F θ ∗ ( x ) , y , θ ∗ ] \underset{\mathcal{D}_{p}}{\arg \max } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{\text {val }}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y, \theta^{*}\right] Dpargmax(x,y)Dval L[Fθ(x),y,θ]
    S.t. θ ∗ ∈ arg ⁡ min ⁡ θ ∗ ∈ Θ ∑ ( x , y ) ∈ D t r ∪ D p L [ F θ ∗ ( x ) , y , θ ] \theta^{*} \in \underset{\theta^{*} \in \Theta}{\arg \min } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{t r} \cup \mathcal{D}_{p}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y, \theta\right] θθΘargmin(x,y)DtrDpL[Fθ(x),y,θ],

  • 威胁模型

    • 攻击者知道,算法结构,超参数以及训练数据集
    • 攻击者可以对训练数据集注入有毒数据并且修改标签

3. method

两种攻击方式:

Class-Oriented availability attacks 可以为两种:

COEG class-oriented error-generic

目标:让模型将所有的输入都分类成目标类(supplanter class)

目标函数: arg ⁡ max ⁡ D p ∑ ( x , y ) ∈ D val  L [ F θ ∗ ( x ) , y , θ ∗ ] \underset{\mathcal{D}_{p}}{\arg \max } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{\text {val }}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y, \theta^{*}\right] Dpargmax(x,y)Dval L[Fθ(x),y,θ]
s.t. θ ∗ ∈ arg ⁡ min ⁡ θ ∗ ∈ Θ ∑ ( x , y ) ∈ D t r ∪ D p L [ F θ ∗ ( x ) , y s , θ ] \quad \theta^{*} \in \underset{\theta^{*} \in \Theta}{\arg \min } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{t r} \cup \mathcal{D}_{p}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y_{s}, \theta\right] θθΘargmin(x,y)DtrDpL[Fθ(x),ys,θ],

y s y_s ys 表示目标类
在这里插入图片描述

COES class-oriented error-specific

目标:降低 victim classes 的准确率,保持 non-victim classes(其他类) 的准确率不变

目标函数: arg ⁡ max ⁡ D p ∑ ( x , y ) ∈ D v a l L [ F θ ∗ ( x ) , y v , θ ∗ ] \underset{\mathcal{D}_{p}}{\arg \max } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{v a l}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y_{v}, \theta^{*}\right] Dpargmax(x,y)DvalL[Fθ(x),yv,θ]
s.t. θ ∗ ∈ arg ⁡ min ⁡ θ ∗ ∈ Θ ∑ ( x , y ) ∈ D t r ∪ D p L [ F θ ∗ ( x ) , y v ˉ , θ ] \quad \theta^{*} \in \underset{\theta^{*} \in \Theta}{\arg \min } \sum_{(\boldsymbol{x}, y) \in \mathcal{D}_{t r \cup \mathcal{D}_{p}}} L\left[\mathcal{F}_{\theta^{*}}(\boldsymbol{x}), y_{\bar{v}}, \theta\right] θθΘargmin(x,y)DtrDpL[Fθ(x),yvˉ,θ],

y v y_v yv 表示 victim classes, y v ˉ y_{\bar{v}} yvˉ 表示 non-victim classes

在这里插入图片描述

两种攻击方式的训练方法

  • COEG Attack

    目标函数:

    • L = λ ⋅ L f y s − L f y o L=\lambda \cdot L_{f_{y_{s}}}-L_{f_{y_{o}}} L=λLfysLfyo
    • L f y s = f y s ( x ) L_{f_{y_{s}}}=f_{y_{s}}(\boldsymbol{x}) Lfys=fys(x)
    • f y k f_{y_k} fyk as the corresponding logit to the categorical label y k y_k yk
    • f y o ( x ) f_{y_{o}}(\boldsymbol{x}) fyo(x) is the logit output of the groundtruth class

    poisoned image x p x_{p} xp

    x p = x o − ϵ ⋅ sign ⁡ ( ∇ x o ( λ ⋅ L f y s − L f y o ) ) \boldsymbol{x}_{\boldsymbol{p}}=\boldsymbol{x}_{\boldsymbol{o}}-\epsilon \cdot \operatorname{sign}\left(\nabla_{\boldsymbol{x}_{o}}\left(\lambda \cdot L_{f_{y_{s}}}-L_{f_{y_{o}}}\right)\right) xp=xoϵsign(xo(λLfysLfyo))

    算法流程
    在这里插入图片描述

  • COES Attack

    COES 既要降低目标类的准确率,又要保持其他类的准确率。

    加毒的过程分为:

    1. 在每一类中选取相同的数量的图片
    2. 通过算法2提升或者减少每幅图像与 label 信息对应的特征信息
    3. 改变目标类的标签

    目标函数:

    L = { λ ⋅ L f y s − L f y o ,  if  x o ∈ C v L f y o ,  otherwise  L= \begin{cases}\lambda \cdot L_{f_{y_{s}}}-L_{f_{y_{o}}}, & \text { if } x_{o} \in \mathcal{C}_{v} \\ L_{f_{y_{o}}}, & \text { otherwise }\end{cases} L={λLfysLfyo,Lfyo, if xoCv otherwise 

    poisoned image x p x_{p} xp

    { x o − ϵ ⋅ sign ⁡ ( ∇ x o ( λ ⋅ L f y s − L f y o ) ) ,  if  x o ∈ C v x o + ϵ ⋅ sign ⁡ ( ∇ x o ( L f y o ) ) ,  otherwise  \begin{cases}x_{o}-\epsilon \cdot \operatorname{sign}\left(\nabla_{x_{o}}\left(\lambda \cdot L_{f_{y_{s}}}-L_{f_{y_{o}}}\right)\right), & \text { if } x_{o} \in \mathcal{C}_{v} \\ x_{o}+\epsilon \cdot \operatorname{sign}\left(\nabla_{x_{o}}\left(L_{f_{y_{o}}}\right)\right), & \text { otherwise }\end{cases} {xoϵsign(xo(λLfysLfyo)),xo+ϵsign(xo(Lfyo)), if xoCv otherwise 

    算法2:在这里插入图片描述

4. experiments

评价指标:

  • Change-to-Target (CTT):其他类被分到目标类的比例
  • Change-from-Target (CFT) :目标类被错误分类的比例

🟠数据集一
MNIST

🟠数据集二
CIFAR-10

🟠数据集三
ImageNet-ILSVRC2012

  • COEG 在三个数据集上的实验结果:
    在这里插入图片描述

  • COES 在 cifar10 上的实验结果:
    在这里插入图片描述

最近,对于图神经网络的研究日益深入,引起了广泛关注。图神经网络是一种能够对图数据进行建模和分析的神经网络模型。它可以处理任意结构的图形数据,如社交网络、蛋白质互作网络等。 在过去的几年中,研究者们提出了许多图神经网络的模型和方法。然而,这些方法仍然面临一些挑战,例如有效地处理大型图形数据、学习高质量的图嵌入表示以及推理和预测复杂的图结构属性等。 为了克服这些挑战,研究人员开始通过增加神经网络的深度来探索更深的图神经网络模型。深度模型具有更强大的表达能力和学习能力,可以更好地捕捉图数据中的关系和模式。这些深层图神经网络可以通过堆叠多个图神经网络层来实现。每个图神经网络层都会增加一定的复杂性和抽象级别,从而逐渐提高图数据的表达能力。 除了增加深度外,研究人员还提出了一些其他的改进来进一步提高图神经网络的性能。例如,引入注意力机制可以使模型能够自动地选择重要的节点和边来进行信息传播。此外,研究人员还研究了如何通过引入图卷积操作来增强图数据的局部性,从而提高图神经网络模型的效果。 综上所述,对于更深层的图神经网络的研究将在处理大规模图形数据、学习高质量的图表示以及进行复杂图结构属性的推理方面取得更好的性能。随着深度图神经网络的推广和应用,我们可以预见它将在许多领域,如社交网络分析、推荐系统和生物信息学中发挥重要作用,为我们带来更多的机遇和挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值