作为一枚长期关注BT与IT融合的小编,最近挖到一篇NC综述,作者从蛋白质结构预测、蛋白质功能预测、基因工程、系统生物学和数据集成以及系统发育推断五个方面讨论了深度学习(DL)的最新进展、局限性和未来展望。
深度学习(DL)允许使用由多层非线性计算单元组成的复杂模型,找到具有多层抽象的数据表示。
机器学习场景和常用DL架构概述
作者从如下四个方面回顾了DL的进展:(i)范式转换(其中DL明显优于其他ML和经典方法,并提供了广泛的影响);(ii)重大成功(其中DL性能通常高于其他ML和经典方法);(iii)中等成功(DL性能通常与其他ML和经典方法相当);(iv)小成功(DL方法未被广泛采用或与其他ML和经典方法相比表现不佳)。然后讨论生物科学中DL的常见挑战。
深度学习在生物科学领域的应用
DL在计算生物学中对经典ML技术的改进,到目前为止取得了不同程度的成功。
范式转变
蛋白质结构预测可能是DL在计算生物学中最成功的应用之一。多序列比对(MSA)形式的大量无监督数据,使得学习蛋白质的非线性进化信息表征成为可能。国际竞赛CASP加速了该领域的进展,CASP13中由谷歌DeepMind小组开发的AlphaFold几乎是基于此前版本预测的两倍。遵循该领域最近的趋势,AlphaFold