NC综述 | 深度学习在生物科学领域的应用

这篇综述探讨了深度学习在生物科学中的应用,包括蛋白质结构预测、功能预测和基因工程等领域,强调了AlphaFold2在结构生物学的突破。尽管取得显著成果,但深度学习在动态构象预测和功能理解等方面仍面临挑战。此外,训练效率和模型可解释性是当前的重要议题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作为一枚长期关注BT与IT融合的小编,最近挖到一篇NC综述,作者从蛋白质结构预测、蛋白质功能预测、基因工程、系统生物学和数据集成以及系统发育推断五个方面讨论了深度学习(DL)的最新进展、局限性和未来展望。

深度学习(DL)允许使用由多层非线性计算单元组成的复杂模型,找到具有多层抽象的数据表示。

机器学习场景和常用DL架构概述

作者从如下四个方面回顾了DL的进展:(i)范式转换(其中DL明显优于其他ML和经典方法,并提供了广泛的影响);(ii)重大成功(其中DL性能通常高于其他ML和经典方法);(iii)中等成功(DL性能通常与其他ML和经典方法相当);(iv)小成功(DL方法未被广泛采用或与其他ML和经典方法相比表现不佳)。然后讨论生物科学中DL的常见挑战。

深度学习在生物科学领域的应用

DL在计算生物学中对经典ML技术的改进,到目前为止取得了不同程度的成功。

范式转变

蛋白质结构预测可能是DL在计算生物学中最成功的应用之一。多序列比对(MSA)形式的大量无监督数据,使得学习蛋白质的非线性进化信息表征成为可能。国际竞赛CASP加速了该领域的进展,CASP13中由谷歌DeepMind小组开发的AlphaFold几乎是基于此前版本预测的两倍。遵循该领域最近的趋势,AlphaFold

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值