关于epochs和batch_size含义的理解

1. epochs的含义

pytorch中关于epochs的定义:
Number of Epochs - the number times to iterate over the dataset
即:在数据集上迭代的次数,或总共遍历了多少次数据集。所以epoch就是遍历一次数据集。注意每个epoch包含了train loop和test loop。
train loop是训练模型,使模型参数收敛至最佳。
tset loop是为了检验模型的性能是否得到了提升。

2. batch_size的含义

pytorch中关于batch_size的定义:

Batch Size - the number of data samples propagated through the network before the parameters are updated
即每用batch_size个数据样本通过模型计算后,根据这batch_size个数据计算的损失,更新一次模型参数。

    for batch_idx, data in enumerate(train_loader, 0):
        # 取出数据
        inputs, target = data #这里的batch_size就等于target.shape的数值大小       
        
        inputs, target = inputs.to(device), target.to(device)
        # 梯度清零
        optimizer.zero_grad()
        # 计算预测值
        outputs = model(inputs)
        # 计算损失
        loss = criterion(outputs, target)
        # 反向传播
        loss.backward()
        # 更新权值
        optimizer.step()
        

上面代码中的batch_size就是target.shape的数值大小,因为在这个循环中就调用了optimizer.step()更新了模型参数

inputs, target = data #这里的batch_size就等于target.shape的数值大小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值