神经网络最重要的是什么,对神经网络的简单理解

1、BP神经网络的核心问题是什么?其优缺点有哪些?

人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.

  • 多层前向BP网络的优点:

  • 网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

  • 网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;

  • 网络具有一定的推广、概括能力。

  • 多层前向BP网络的问题:

  • 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;

  • 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

  • 难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

  • 网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

  • 新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

  • 网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律

  • 由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

  • 存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

  • 为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

谷歌人工智能写作项目:小发猫

2、神经网络的基本原理是什么?

神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化神经网络的关键是什么基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。

神经网络常见的工具:

以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。

以上内容参考:

3、BP神经网络算法的关键词

BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下:
(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。
(2)由给定的输入输出模式对计算隐层、输出层各单元输出
bj=f(■wijai-θj) ct=f(■vjtbj-rt)
式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层至隐层的连接权;vjt为隐层至输出层的连接权。
dtk=(ytk-ct)ct(1-ct) ejk=[■dtvjt] bj(1-bj)
(3)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
传统的BP算法,实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法,但其收敛速度慢且容易陷入局部极小,为此提出了一种新的算法,即高斯消元法。 2.1 改进算法概述
此前有人提出:任意选定一组自由权,通过对传递函数建立线性方程组,解得待求权。本文在此基础上将给定的目标输出直接作为线性方程等式代数和来建立线性方程组,不再通过对传递函数求逆来计算神经元的净输出,简化了运算步骤。没有采用误差反馈原理,因此用此法训练出来的神经网络结果与传统算法是等效的。其基本思想是:由所给的输入、输出模式对通过作用于神经网络来建立线性方程组,运用高斯消元法解线性方程组来求得未知权值,而未采用传统BP网络的非线性函数误差反馈寻优的思想。
2.2 改进算法的具体步骤
对给定的样本模式对,随机选定一组自由权,作为输出层和隐含层之间固定权值,通过传递函数计算隐层的实际输出,再将输出层与隐层间的权值作为待求量,直接将目标输出作为等式的右边建立方程组来求解。
现定义如下符号(见图1):x (p)输入层的输入矢量;y (p)输入层输入为x (p)时输出层的实际输出矢量;t (p)目标输出矢量;n,m,r分别为输入层、隐层和输出层神经元个数;W为隐层与输入层间的权矩阵;V为输出层与隐层间的权矩阵。具体步骤如下:
(1)随机给定隐层和输入层间神经元的初始权值wij。
(2)由给定的样本输入xi(p)计算出隐层的实际输出aj(p)。为方便起见将图1网络中的阀值写入连接权中去,令:隐层阀值θj=wnj,x(n)=-1,则:
aj(p)=f(■wijxi(p)) (j=1,2…m-1)。
(3)计算输出层与隐层间的权值vjr。以输出层的第r个神经元为对象,由给定的输出目标值tr(p)作为等式的多项式值建立方程,用线性方程组表示为:
a0(1)v1r+a1(1)v2r+…+am(1)vmr=tr(1)a0(2)v1r+a1(2)v2r+…+am(2)vmr=tr(2) ……a0(p)v1r+a1(p)v2r+…+am(p)vmr=tr(p) 简写为: Av=T
为了使该方程组有唯一解,方程矩阵A为非奇异矩阵,其秩等于其增广矩阵的秩,即:r(A)=r(A┊B),且方程的个数等于未知数的个数,故取m=p,此时方程组的唯一解为: Vr=[v0r,v2r,…vmr](r=0,1,2…m-1)
(4)重复第三步就可以求出输出层m个神经元的权值,以求的输出层的权矩阵加上随机固定的隐层与输入层的权值就等于神经网络最后训练的权矩阵。 现以神经网络最简单的XOR问题用VC编程运算进行比较(取神经网络结构为2-4-1型),传统算法和改进BP算法的误差(取动量因子α=0.001 5,步长η=1.653)

4、神经网络具体是什么?

神经网络由大量的神经元相互连接而成。每个神经元接受线性组合的输入后,最开始只是简单的线性加权,后来给每个神经元加上了非线性的激活函数,从而进行非线性变换后输出。每两个神经元之间的连接代表加权值,称之为权重(weight)。不同的权重和激活函数,则会导致神经网络不同的输出。 举个手写识别的例子,给定一个未知数字,让神经网络识别是什么数字。此时的神经网络的输入由一组被输入图像的像素所激活的输入神经元所定义。在通过非线性激活函数进行非线性变换后,神经元被激活然后被传递到其他神经元。重复这一过程,直到最后一个输出神经元被激活。从而识别当前数字是什么字。 神经网络的每个神经元如下

基本wx + b的形式,其中 x1、x2表示输入向量 w1、w2为权重,几个输入则意味着有几个权重,即每个输入都被赋予一个权重 b为偏置bias g(z) 为激活函数 a 为输出 如果只是上面这样一说,估计以前没接触过的十有八九又必定迷糊了。事实上,上述简单模型可以追溯到20世纪50/60年代的感知器,可以把感知器理解为一个根据不同因素、以及各个因素的重要性程度而做决策的模型。 举个例子,这周末北京有一草莓音乐节,那去不去呢?决定你是否去有二个因素,这二个因素可以对应二个输入,分别用x1、x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1、w2表示。一般来说,音乐节的演唱嘉宾会非常影响你去不去,唱得好的前提下 即便没人陪同都可忍受,但如果唱得不好还不如你上台唱呢。所以,我们可以如下表示: x1:是否有喜欢的演唱嘉宾。x1 = 1 你喜欢这些嘉宾,x1 = 0 你不喜欢这些嘉宾。嘉宾因素的权重w1 = 7 x2:是否有人陪你同去。x2 = 1 有人陪你同去,x2 = 0 没人陪你同去。是否有人陪同的权重w2 = 3。 这样,咱们的决策模型便建立起来了:g(z) = g(w1x1 + w2x2 + b ),g表示激活函数,这里的b可以理解成 为更好达到目标而做调整的偏置项。 一开始为了简单,人们把激活函数定义成一个线性函数,即对于结果做一个线性变化,比如一个简单的线性激活函数是g(z) = z,输出都是输入的线性变换。后来实际应用中发现,线性激活函数太过局限,于是引入了非线性激活函数。

5、神经网络 的四个基本属性是什么?

神经网络 的四个基本属性:

(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。

(2)无限制性:神经网络通常由多个连接广泛的神经元组成。一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。

(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。

(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。

扩展资料:

神经网络的特点优点:

人工神经网络的特点和优越性,主要表现在三个方面:

第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

参考资料:

6、什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

7、神经网络是什么?

生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。
人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。
作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。
人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。
因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值