IplImage 封装释放

IplImage是openCV库中很重要的一个结构体,库中的图像都是保存为这个结构体后再进行操作的,具体结构如下:

</pre><pre>

typedef struct _IplImage
{
int nSize;                /* IplImage大小 */
int ID;                  /* 版本 (=0)*/
int nChannels;           /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
int alphaChannel;        /* 被OpenCV忽略 */
int depth;               /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
char colorModel[4];      /* 被OpenCV忽略 */
char channelSeq[4];      /* 同上 */
int dataOrder;           /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. cvCreateImage只能创建交叉存取图像 */
int origin;              /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
int align;               /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
int width;               /* 图像宽像素数 */
int height;              /* 图像高像素数*/
struct _IplROI *roi;     /* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
void *imageId;             /* 同上*/
struct _IplTileInfo *tileInfo; /*同上*/
int imageSize;           /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
char *imageData;         /* 指向排列的图像数据 */
int widthStep;           /* 排列的图像行大小,以字节为单位 */
int BorderMode[4];       /* 边际结束模式, 被OpenCV忽略 */
int BorderConst[4];      /* 同上 */
char *imageDataOrigin;   /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
}IplImage;

cvCreateImage()来创建包含头与数据内存,而cvCreateImageHeader则是只创建结构头,当可以预先分配好内存然后使用cvSetData影射到IplImage上。正是这个结构非常重要,但是很人在使用IplImage对象时申请了内存会经常忘记释放内存。我在下提供一个封装好的IplImage类:

class  CVImage
{
public :
	CVImage();
	CVImage(unsigned int width, unsigned int height, unsigned short depth, unsigned short nChannels = 3);
	CVImage(CVImage& img);
	~CVImage();

	void ReleaseImage();
	int Resize(unsigned int width, unsigned int height, unsigned short depth, unsigned short nChannels = 3);
	
	operator IplImage*() { return m_image; };
	inline IplImage* GetImage() { return m_image; };

private:
	IplImage* m_image;
};
CVImage.cpp
CVImage::CVImage() : m_image(NULL)
{
}

CVImage::CVImage( unsigned int width, unsigned int height, unsigned short depth, unsigned short nChannels ) : m_image(NULL)
{
	Resize(width, height, nChannels);
}

CVImage::CVImage( CVImage& img)
{
	IplImage* tmpImg = img.GetImage();

	if(m_image)
	{
		if(m_image->width != tmpImg->width || m_image->height != tmpImg->height)
		{
			cvReleaseImage(&m_image);
		}
	}
	m_image = cvCloneImage(tmpImg);
}

CVImage::~CVImage()
{
	ReleaseImage();
}

void CVImage::ReleaseImage()
{
	if(m_image)
	{
		cvReleaseImage(&m_image);
	}
}

int CVImage::Resize( unsigned int width, unsigned int height, unsigned short depth, unsigned short nChannels)
{
	if(0 == width || 0 == height || 0 == depth || 0 == nChannels)
		return -1;

	if(m_image)
	{
		if(width != m_image->width || height != m_image->height)
			ReleaseImage();
	}
	m_image = cvCreateImage(cvSize(width, height), depth, nChannels);
	
	return NULL == m_image ? -1 : 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值