867. 分解质因数(最强时间复杂度,O(sqrt(N)))


 这里有个性质:n中最多只含有一个大于sqrt(n)的因子。证明通过反证法:如果有两个大于sqrt(n)的因子,那么相乘会大于n,矛盾。证毕
于是我们发现最多只有一个大于sqrt(n)的因子,对其进行优化。先考虑比sqrt(n)小的,代码和质数的判定类似
最后如果n还是>1,说明这就是大于sqrt(n)的唯一质因子,输出即可。

时间复杂度:O(sqrt(N)))!

代码:

#include <bits/stdc++.h>
using namespace std;
int n,t,s;
void f(int x)
{
  for(int i = 2;i <= x / i;i++)
    if(x % i == 0)
    {
      s = 0;
      while(x % i == 0)
      {
        x /= i;
        s++;
      }
      cout<<i<<" "<<s<<endl;
    }
    if(x > 1) cout<<x<<" 1"<<endl;
    puts("");
}
int main()
{
  cin>>n;
  while(n--)
  {
    cin>>t;
    f(t);
  }
  return 0;
}

如果这篇文章对您有帮助的话,请记得点赞收藏加关注吖(●'◡'●)

### 分解质因数算法时间复杂度分析 对于给定的一个正整数 \( n \),分解质因数的过程可以采用试除法来完成。该方法的核心是从最小的素数开始尝试去除 \( n \) 的因子,直到无法再被整除为止。 当讨论时间复杂度时,需区分两种情况: - **一般情况下**:试除法会遍历从 2 到 \( \sqrt{n} \)[^1]之间的所有可能的因子。因此,在最坏的情况下——即当测试对象是一个大素数或由几个较大的素数构成时,所需的操作次数接近于 \( O(\sqrt{n}) \)[^4]。 - **特殊情况**:如果 \( n \) 是形如 \( 2^k \) 这样的形式,则只需要执行大约 \( log_2(n)=log(n)/log(2)\approx O(log\ n) \)[^1]次操作就能得到完整的质因数组成;这是因为每次迭代都会使当前数值减半直至达到最终结果。 此外值得注意的是,由于任何合数至多仅有一个超过 \( \sqrt{n} \) 的质因数存在,所以在实际编程实践中可以在找到小于等于 \( \sqrt{n} \) 的全部质因数之后单独处理这个潜在的大质因数,从而进一步提高效率。 综上所述,分解质因数算法的整体平均性能优于简单的线性扫描方式,并且能够有效地应对大多数输入场景下的需求。 ```cpp #include <iostream> using namespace std; void divide(int x){ for (int i = 2; i <= x / i; ++i){ // 只需要枚举到 sqrt(x) if (x % i == 0){ int cnt = 0; while (x % i == 0){ x /= i; cnt++; } cout << "Prime factor: " << i << ", Power: " << cnt << endl; } } if (x > 1) cout << "Prime factor: " << x << ", Power: 1" << endl; // 处理剩余的大于 sqrt 原始值的单一质因数 } int main(){ int num_tests, value; cin >> num_tests; while(num_tests--){ cin >> value; divide(value); } } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值