开放阅读框(Open Reading Frame,ORF)是基因序列分析中的重要概念。它是指在核酸序列(DNA或RNA)中,从起始密码子开始,到终止密码子结束的一段连续的核苷酸序列,这段序列能够被核糖体识别并可能编码出具有特定功能的蛋白质。在基因研究中,准确识别开放阅读框对于理解基因的功能、蛋白质的合成以及生物的遗传信息传递等方面都具有重要意义。今天,就给大家介绍一款专门用于开放阅读框分析的实用工具——ORFipy。
ORFipy是一种基于Python的工具,用于从基因组和转录组序列中快速、灵活地搜索开放阅读框(ORFs)。该工具由Urminder Singh和Eve Syrkin Wurtele开发,已发表在《Bioinformatics》杂志上。

网址:
https://academic.oup.com/bioinformatics/article/37/18/3019/6134074

ORFipy的功能特点
1. 多模式识别:ORFipy支持多种识别模式,可识别标准起始(如ATG、GTG、TTG等)及终止密码子,且能依不同物种密码子偏好性灵活调整,在分析不同生物核酸序列时能准确找ORF。支持原核/真核生物、病毒基因组等不同序列类型的ORF预测。
2. 灵活的参数设置:该工具提供丰富参数选项,用户可按研究需求调整。如设置ORF最小、最大长度筛选特定范围开放阅读框(寻找短肽编码ORF可设较小最小长度);还能调整如允许移码突变数量等参数,满足不同分析场景。
3. 多种输入格式:支持多FASTA/FASTQ、纯文本或gz压缩格式的核苷酸序列作为输入
4. 结果输出多样:ORFipy分析结果输出形式多样,便于后续分析处理。它可输出ORF位置信息(核酸序列起始和终止位点)及预测蛋白质序列,结果文件能以FASTA、GFF等常见格式保存,方便与其他生物信息学工具对接,如将预测蛋白质序列导入蛋白质结构预测软件探究功能。
5. 高效快速:处理大规模核酸序列数据时,ORFipy高效快速,采用优化算法能在短时间内完成大量序列的ORF识别,节省研究人员分析海量基因组测序数据的时间,提高研究效率。
6. 附加信息:添加关于密码子使用和ORF类型的相关信息,并能按特定标准对输出进行分组。
总结
ORFipy是功能强大的开放阅读框分析工具,具多模式识别、参数灵活设置、结果输出多样、高效快速等特点,适用于大规模基因组和转录组数据处理,支持自定义及后续分析管道开发。应用实例表明,它能助力发现不同生物基因组中的新基因和功能元件,为基因功能研究、生物进化分析及生物医学应用等领域提供支持。如果你觉得在本地安装和配置ORFipy比较麻烦,Galaxy生信云平台(网址:usegalaxy.cn)为你提供了一个便捷的解决方案。Galaxy平台的集成更打破了技术壁垒——正如生物信息学工具进化的终极目标:让科学发现回归问题本质,而非困于技术细节。
推荐阅读
中国银河生信云平台(UseGalaxy.cn)以“让生信分析更简单”为使命。平台致力于为科研工作者、医疗机构和生物产业技术人员提供全栈式生物信息学分析解决方案。
优先技术响应、定制化工具部署、阶梯式能力培养,请加入「Galaxy生信星球」。咨询微信:usegalaxy 或 galaxy-help