import pandas as pd from textblob import TextBlob # 读取已处理的新闻文本 df = pd.read_excel ( '老挝新闻文本清洗.xlsx' ) # 创建一个空的DataFrame来存储情感分析结果 sentiment_df = pd.DataFrame ( columns=['Title', 'Content', 'Combined Text', 'Sentiment'] ) # 使用TextBlob进行情感分析 for index, row in df.iterrows ( ): title = row['cleaned_title'] content = row['cleaned_content'] # 合并标题和内容进行情感分析 combined_text = title + " " + content blob = TextBlob ( combined_text ) # 获取情感分数(介于-1和1之间) sentiment_score = blob.sentiment.polarity # 根据情感分数判断情感类别 if sentiment_score > 0.1: sentiment = 1 # 正面情感 elif sentiment_score < -0.1: sentiment = -1 # 负面情感 else: sentiment = 0 # 中立情感 # 将结果添加到DataFrame中 sentiment_df = pd.concat ( [sentiment_df, pd.DataFrame ( {'Title': [title], 'Content': [content], 'Combined Text': [combined_text], 'Sentiment': [sentiment]} )], ignore_index=True ) # 保存情感分析结果到Excel文件 sentiment_df.to_excel ( '老挝新闻情感分析结果.xlsx', index=False ) print ( "情感分析完成,并已保存结果到印度尼西亚新闻情感分析结果.xlsx" )
情感三元分析
最新推荐文章于 2024-11-03 20:27:08 发布