情感三元分析

import pandas as pd
from textblob import TextBlob

# 读取已处理的新闻文本
df = pd.read_excel ( '老挝新闻文本清洗.xlsx' )

# 创建一个空的DataFrame来存储情感分析结果
sentiment_df = pd.DataFrame ( columns=['Title', 'Content', 'Combined Text', 'Sentiment'] )

# 使用TextBlob进行情感分析
for index, row in df.iterrows ( ):
    title = row['cleaned_title']
    content = row['cleaned_content']

    # 合并标题和内容进行情感分析
    combined_text = title + " " + content

    blob = TextBlob ( combined_text )

    # 获取情感分数(介于-1和1之间)
    sentiment_score = blob.sentiment.polarity

    # 根据情感分数判断情感类别
    if sentiment_score > 0.1:
        sentiment = 1  # 正面情感
    elif sentiment_score < -0.1:
        sentiment = -1  # 负面情感
    else:
        sentiment = 0  # 中立情感

    # 将结果添加到DataFrame中
    sentiment_df = pd.concat ( [sentiment_df, pd.DataFrame (
        {'Title': [title], 'Content': [content], 'Combined Text': [combined_text], 'Sentiment': [sentiment]} )],
                               ignore_index=True )

# 保存情感分析结果到Excel文件
sentiment_df.to_excel ( '老挝新闻情感分析结果.xlsx', index=False )

print ( "情感分析完成,并已保存结果到印度尼西亚新闻情感分析结果.xlsx" )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值