深度学习剖根问底: Adam优化算法理解

标签: Adam
9人阅读 评论(0) 收藏 举报
分类:

Momentum是为了对冲mini-batch带来的抖动。

RMSprop是为了对hyper-parameter进行归一,均方根反向传播(RMSProp)

这两个加起来就是Adam

看原始的RMSProp算法: 
这里写图片描述

再看算法:其实就是Momentum+RMSProp的结合,然后再修正其偏差。 
这里写图片描述

查看评论

梳理caffe代码adadelta、adagrad、adam、nesterov、rmsprop_solver(十六)

有一篇不错的blog描述梯度下降的方法。 这节是新版caffe solver的5个求解方法: adagrad_solver.cpp: #include #include "caffe/sgd_s...
  • langb2014
  • langb2014
  • 2016-05-30 10:49:50
  • 3437

深度学习剖根问底: Adam优化算法的由来

转载:https://zhuanlan.zhihu.com/p/27449596?utm_source=weibo&utm_medium=social在调整模型更新权重和偏差参数的方式...
  • wfei101
  • wfei101
  • 2018-04-14 11:27:23
  • 69

深度学习剖根问底:激活函数ReLU

激活函数的作用首先,激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题。比如在下面的这个问题中:如上图(图片来源),...
  • wfei101
  • wfei101
  • 2018-04-08 21:32:09
  • 9

2017年深度学习优化算法最新进展:如何改进SGD和Adam方法?

原作 Sebastian Ruder 王小新 编译自 ruder.io  量子位 出品 | 公众号 QbitAI 深度学习的基本目标,就是寻找一个泛化能力强的最小值,模型的快速性和可靠性也是...
  • yH0VLDe8VG8ep9VGe
  • yH0VLDe8VG8ep9VGe
  • 2017-12-10 00:00:00
  • 871

深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

前言(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient...
  • u012759136
  • u012759136
  • 2016-08-24 18:20:26
  • 19569

深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

最近在看Google的Deep Learning一书,看到优化方法那一部分,正巧之前用tensorflow也是对那些优化方法一知半解的,所以看完后就整理了下放上来,主要是一阶的梯度法,包括SGD, M...
  • u014595019
  • u014595019
  • 2016-11-01 00:31:23
  • 34254

最优化方法系列:SGD、Adam

文章链接:Deep Learning 最优化方法之SGD 72615436本文是Deep Learning 之 最优化方法系列文章   整个优化系列文章列表: Deep Learning 之...
  • wishchin
  • wishchin
  • 2018-03-15 17:58:08
  • 75

深度学习剖根问底:正则化L1和L2范式

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,...
  • wfei101
  • wfei101
  • 2018-04-08 21:22:32
  • 5

深度学习剖根问底:Logistic回归和Softmax回归

1. 简介逻辑回归和Softmax回归是两个基础的分类模型,虽然听名字以为是回归模型,但实际我觉得他们也有一定的关系。逻辑回归,Softmax回归以及线性回归都是基于线性模型,它们固定的非线性的基函数...
  • wfei101
  • wfei101
  • 2018-04-08 21:28:42
  • 3

深度学习剖根问底:BN中的协方差偏移

今天给大家带来深度学习的优化策略篇的第一篇Batch Normalization(BN)。BN可以看做对输入样本的一种约束,最大作用是加速收敛,减少模型对dropout,careful weight ...
  • wfei101
  • wfei101
  • 2018-04-09 21:30:37
  • 6
    个人资料
    持之以恒
    等级:
    访问量: 12万+
    积分: 2331
    排名: 1万+
    最新评论