数学复习(11)微分的其它(复合性)问题

利用导数求曲线切线方程

1. 求导确定斜率

 - 对函数 y = f(x)求导,得到 f'(x)

- 代入给定的 x 值(如 x_0),计算切线斜率 m = f'(x_0)

2. 确定切点坐标

 - 将 x_0代入原函数 f(x),得到对应的 yy_0 = f(x_0),即切点为 (x_0, y_0)

3. 应用点斜式方程

 - 使用点斜式 y - y_0 = m(x - x_0),代入 mx_0y_0,得到切线方程。

习题:

y = \frac{1}{x + 2}x = 1处的切线方程

 解: 

1. 求导确定斜率

 - 原函数:y = \frac{1}{x + 2} = (x + 2)^{-1}

- 链式法则:设 u = x + 2,则 y = u^{-1}

\frac{dy}{dx} = -1 \cdot u^{-2} \cdot \frac{du}{dx} = -\frac{1}{(x + 2)^2} \cdot 1 = -\frac{1}{(x + 2)^2}

- 代入 x = 1\frac{dy}{dx} = -\frac{1}{(1 + 2)^2} = -\frac{1}{9} (m = -\frac{1}{9}

2. 确定切点坐标

 - 将 x = 1代入原函数:y = \frac{1}{1 + 2} = \frac{1}{3}

- 切点为 \left( 1, \frac{1}{3} \right)

3. 应用点斜式方程

 - 点斜式:y - y_0 = m(x - x_0)

- 代入 m = -\frac{1}{9}x_0 = 1y_0 = \frac{1}{3}y - \frac{1}{3} = -\frac{1}{9}(x - 1)

- 化简方程(可选): y = -\frac{1}{9}x + \frac{1}{9} + \frac{1}{3} = -\frac{1}{9}x + \frac{4}{9}

关键说明

 - 导数规则:此例使用链式法则(或分式函数的导数公式),与原例中的多项式复合函数类似,但分式结构更直观。

- 斜率符号:负斜率表示切线从左上方向右下方倾斜。

- 化简方程:最终方程保留分数形式,便于观察几何意义。

对比原例与三角函数例:

函数类型导数方法计算复杂度几何特点
多项式复合链式法则陡峭斜率(如原例 600)
三角函数基本导数公式周期性波动(如正弦)
分式函数链式法则 / 商法则渐近线特性

总结: 无论函数类型如何,求切线方程的核心步骤始终为:

1. 求导得斜率

2. 代入得切点 

3. 点斜式写方程。

关键是灵活运用导数规则(各种基本法则如链式法则、商法则),并正确代入数值。

导数在运动学中的应用

 核心概念

 1. 速度与加速度的定义 

- 速度是位置对时间的一阶导数:v(t) = \frac{dx}{dt}

- 加速度是速度对时间的一阶导数(即位置的二阶导数):a(t) = \frac{dv}{dt} = \frac{d^2x}{dt^2}

 2. 自由落体运动模型

 - 物体受恒定重力加速度 a = -g(向下为负方向)。

- 运动方程:

- 速度:v(t) = -gt + uu为初速度)。

- 位置:x(t) = -\frac{1}{2}gt^2 + ut + hh 为初始高度)。

例子:遥控车的运动分析

 假设一辆遥控车在直线上行驶,其位置随时间 t(秒)的变化由函数 x(t) = 2t^3 - 9t^2 + 12t + 5(米)给出。我们通过导数分析其运动状态。

步骤1:求速度 v(t) 速度是位置的一阶导数:

v(t) = \frac{dx}{dt} = \frac{d}{dt}(2t^3 - 9t^2 + 12t + 5) = 6t^2 - 18t + 12(米/秒) 

问题1:t = 2 秒时,速度是多少?

 代入 t = 2v(2) = 6(2)^2 - 18(2) + 12 = 24 - 36 + 12 = 0

步骤2:求加速度 a(t)

加速度是速度的一阶导数(位置的二阶导数):

a(t) =\frac{dv}{dt} = \frac{d}{dt}(6t^2 - 18t + 12) = 12t - 18

问题1(续):当t = 2 秒时,加速度是多少?

代入 t = 2a(2) = 12(2) - 18 = 24 - 18 = 6 {米/秒²} 

步骤3:

分析速度为零的时刻

v(t) = 0

解方程:

6t^2 - 18t + 12 = 0 \quad \Rightarrow \quad t^2 - 3t + 2 = 0 \quad \Rightarrow t = 1或 t = 2 (秒)

问题2:遥控车何时速度为零?此时是否改变运动方向?

- 当t = 1秒时,速度由正变负(加速度为 a(1) = -6米/秒²),方向改变。

- 当 t = 2秒时,速度由负变正(加速度为 a(2) = 6米/秒²),方向再次改变。

步骤4:分析加速度为零的时刻

 令 a(t) = 0

解方程:

12t - 18 = 0 \quad \Rightarrow \quad t = 1.5(秒)

问题3:遥控车何时加速度为零?此时速度是多少?

代入 t = 1.5 秒:

v(1.5) = 6(1.5)^2 - 18(1.5) + 12 = 13.5 - 27 + 12 = -1.5{米/秒}

此时速度为负,但加速度为零,说明速度达到极值(最小值)。

关键说明

1. 导数的作用:通过位置函数的一阶导数求速度,二阶导数求加速度。

2. 应用场景: - 计算某时刻的速度和加速度。

- 判断运动方向变化(速度为零且加速度非零)。

- 分析速度极值(加速度为零时)。

3. 单位意义:速度单位为米/秒,加速度单位为米/秒²,体现“每秒速度的变化量”。

导数和极限之间的转换

核心概念

 当极限表达式呈现为 \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} 的形式时,它本质上是函数 f(x) 在点 x=a 处的导数 f'(a)。即使极限被伪装(如分子含哑变量、非标准形式等),通过构造合适的函数并匹配导数定义,可高效求解。

解题步骤

 1. 识别伪装形式:

- 典型特征:分子为两个表达式的差,分母为哑变量 h(或其变形)。

- 非典型情况:分子含哑变量时,可通过颠倒分子分母后再调整(如 \lim_{h \to 0} \frac{h}{f(a+h) - f(a)} 转化为 1/f'(a))。

2. 构造函数与选点:

- 函数选择:根据分子结构确定 f(x)(如 \sqrt[5]{x}(x+4)^3 等)。

- 选点代入:令 a为表达式中与 h 相加的常数(如34 等)。

3. 计算导数:

- 对 f(x)求导,代入 x=a 得到 f'(a),即为原极限值。

习题

 1. 例1:

\lim_{h \to 0} \frac{\sqrt[5]{3 + h} - \sqrt[5]{3}}{h}

- 构造:设 f(x) = \sqrt[5]{x},则 f'(x) = \frac{1}{5}x^{-4/5}

- 代入:f'(3) = \frac{1}{5 \cdot 3^{4/5}},即原极限值。

2. 例2:

\lim_{h \to 0} \frac{(4 + h)^3 - 4^3}{h}

- 构造:设 f(x) = x^3,则 f'(x) = 3x^2

- 代入:f'(4) = 3 \cdot 4^2 = 48,即原极限值。

3. 例3(分子含哑变量):

\lim_{h \to 0} \frac{h}{(3 + h)^6 - 3^6}

- 颠倒后构造:先求 \lim_{h \to 0} \frac{(3 + h)^6 - 3^6}{h} = f'(3),其中 f(x) = x^6,得 f'(3) = 6 \cdot 3^5

- 原极限:\frac{1}{6 \cdot 3^5}

关键说明

 1. 伪装的本质:极限的核心是导数定义,需通过函数构造和变量替换揭开伪装。

2. 普适性策略:

- 若极限形式为\frac{f(a+h) - f(a)}{h},直接对应 f'(a)

- 若形式为 \frac{h}{f(a+h) - f(a)},则对应 \frac{1}{f'(a)}

3. 注意事项:

- 优先处理一般情况(求导函数),再代入具体点值。

- 哑变量的位置(分子或分母)不影响本质,通过调整变量即可转化。 

分段函数导数

分段函数导数的检验步骤

对于分段函数在分界点处的可导性,需依次检验以下两点:

  1. 连续性
    • 分界点处的左极限、右极限与函数值相等。
  2. 可导性
    • 分界点处的左导数(左分段的导函数在该点的极限)与右导数(右分段的导函数在该点的极限)相等。

习题

题1:指数函数与多项式的分段过渡

分段函数定义: f(x) = \begin{cases} e^x, & x \leq 0 \\ 1 + x + x^2, & x > 0 \end{cases}

检验点:x = 0

1. 连续性检验:

- 左极限:\lim_{x \to 0^-} e^x = e^0 = 1

- 右极限:\lim_{x \to 0^+} (1 + x + x^2) = 1 + 0 + 0 = 1

- 函数值:f(0) = e^0 = 1

结论:连续。

2. 可导性检验:

- 左导数:f(x) = e^xx=0 处的导数为 e^0 = 1

- 右导数:f(x) = 1 + x + x^2x=0 处的导数为 1 + 2 \cdot 0 = 1

结论:左右导数相等,f'(0) = 1,可导。

题2:绝对值与多项式的分段过渡

分段函数定义: g(x) = \begin{cases} |x - 1|, & x \leq 1 \\ x^2, & x > 1 \end{cases}

检验点:x = 1

1. 连续性检验:

- 左极限:\lim_{x \to 1^-} |x - 1| = 0

- 右极限:\lim_{x \to 1^+} x^2 = 1

- 函数值:g(1) = |1 - 1| = 0

结论:不连续(左极限 ≠ 右极限),因此不可导。

题3:连续但不可导的分段函数

分段函数定义: h(x) = \begin{cases} x^3, & x \leq 2 \\ 4x, & x > 2 \end{cases}

检验点:x = 2

1. 连续性检验:

- 左极限:\lim_{x \to 2^-} x^3 = 8

- 右极限:\lim_{x \to 2^+} 4x = 8

- 函数值:h(2) = 2^3 = 8

结论:连续。

2. 可导性检验:

- 左导数:h(x) = x^3x=2 处的导数为 3 \cdot 2^2 = 12

- 右导数:h(x) = 4xx=2 处的导数为 4

结论:左右导数不等,不可导。

关键步骤总结

1. 连续性: - 计算分界点处的左极限、右极限和函数值,三者需相等。

2. 可导性: - 分别计算左分段和右分段在分界点处的导数(即导函数的极限)。

- 若左右导数相等,则可导;否则不可导。

图像辅助理解

- 例1:在 x=0 处平滑连接,无尖角,可导。

- 例2:在 x=1处存在跳跃(不连续),不可导。

- 例3:在 x=2 处连续但存在“拐角”,不可导。

常见错误提醒

1. 忽略绝对值分解:如未将 |x-1| 分解为分段函数,导致分界点遗漏。

2. 导数计算错误:如将多项式导数的系数搞错(如 x^2 的导数应为 2x,而非 x)。

3. 连续性未检验:直接计算导数而忽略连续性,导致错误结论。

结论

  1. 分段函数可导性条件:分界点处需同时满足连续性和左右导数相等。
  2. 绝对值函数的处理:需先分解为分段函数,再检验各分界点。
  3. 图像直观性:尖角处不可导,平滑过渡处可导。

关键说明

通过连续性和左右导数的双重检验,可系统判断分段函数在分界点的可导性。图像可辅助直观理解,但代数检验是严谨性的保障。注意在检验分段函数时,需仔细处理绝对值、不等式等隐含的分界点,并确保分段定义的准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值