高等数学(第五章:多元微分学)


一、多元微分的概念

1. 二重极限

1)二重极限的概念

2)判断极限是否存在

注:若 m, n 全是偶数且 (a/m) + (b/n) ≤ 1 时,选取的路径为:y = k·x(m-a)/b

证明极限不存在:(分子次数 ≤ 分母次数)

【方法】:

I、取直线 y = k·x(m-a)/b ,代入,发现极限值与 k 有关(套公式);

II、找两条极限不相等的具体的路径(找路径)。

【例题】:

  • limx→0,y→0 (x·y) / (x2+y2)
    令 y = k·x ,有 limx→0,y→0 (x·k·x) / (x2+k2·x2) = k / (1+k2)
    极限取值依赖于 k 的取值,因此该极限不存在

  • limx→0,y→0 (x·y2) / (x2+y4)
    令 y = k·√x ,有 limx→0,y→0 (x·k2·x) / (x2+k4·x2) = k2 / (1+k4)
    极限取值依赖于 k 的取值,因此该极限不存在

证明极限存在:(分子次数 > 分母次数)

【例题】:

  • limx→0,y→0 (x2+y2) / (|x|+|y|)
    0 ≤ (x2+y2) / (|x|+|y|) = (|x|·|x|) / (|x|+|y|) + (|y|·|y|) / (|x|+|y|) ≤ |x| + |y| → 0

  • limx→0,y→0 [x·y2·sin(x·y)] / (x2+y4)
    0 ≤ |[x·y2·sin(x·y)] / (x2+y4)| = |(x·y2) / (x2+y4)| · |sin(x·y)| ≤ (1/2) · |sin(x·y)| → 0

2. 连续

二元函数连续:lim(x,y)→(x0,y0) f(x, y) = f(x0, y0)

定义:若 lim(x,y)→(x0,y0) f(x, y) = f(x0, y0) ,则称 f(x, y) 在点 (x0, y0) 处连续。

3. 偏导数

1)一阶偏导数定义

2)偏导数存在的几何意义

偏导数存在仅仅是沿着坐标轴方向趋向,如:fx’(x0, y0) 是固定 y = y0 ,而重极限存在要求是任意方向趋向,这也正是偏导数存在 --/–> 重极限存在的本质原因。

下面举一个例题:

3)高阶偏导数

下面举一个例题:

4. 可微(全微分 dz)

1)可微的定义

若函数 z = f(x, y) 在点 (x, y) 可微,且函数 z = f(x, y) 在点 (x, y) 的偏导数 ∂z/∂x , ∂z/∂y 存在,则 dz = (∂z/∂x)·dx + (∂z/∂y)·dy 。
注:只有当函数在该点可微时,全微分 dz = (∂z/∂x)·dx + (∂z/∂y)·dy 。

【注】:

2)可微的等价定义

3)可微的判定

写定义,就是取看极限是否等于 0 。

Δz = f(x, y) - f(x0, y0) = A·(x-x0) + B·(y-y0) + o(ρ)
⇒ f(x, y) - f(x0, y0) - A·(x-x0) - B·(y-y0) = o(ρ) = √[(x-x0)2+(y-y0)2]

其中 A = fx’(x0, y0) 、B = fy’(x0, y0) 。

可微的充要条件

  • 必要条件(结论推条件):可微 ⇒ fx’(x0, y0) 与 fy’(x0, y0) 都存在

  • 充分条件(条件推结论):fx’(x, y) 与 fy’(x, y) 在 (x0, y0) 处连续 ⇒ 可微

下面举一个例题:

5. 偏导数连续

定义:fx’(x0, y0) = limx→x0,y→y0 fx’(x, y) 且 fy’(x0, y0) = limx→x0,y→y0 fy’(x, y) 。

易错:limx→0 fx’(x, 0) = fx’(0, 0) 不是偏导数连续。

6. 连续、偏导与可微的关系

详解二元之间的关系(见上图左):

  • 偏导数连续:fx’(x0, y0) = limx→x0,y→y0 fx’(x, y) 且 fy’(x0, y0) = limx→x0,y→y0 fy’(x, y)

  • 可微:若函数在点 (x0, y0) 可微,则有 Δz = f(x, y) - f(x0, y0) = A·(x-x0) + B·(y-y0) + o(ρ)

  • 连续:lim(x,y)→(x0,y0) f(x, y) = f(x0, y0)

  • 偏导数存在:fx’(x0, y0) 与 fy’(x0, y0) 存在

  • 重极限存在:二重极限 lim(x,y)→(x0,y0) f(x, y) 存在,要求点 (x, y) 在 D 内以任意方式趋近于点 (x0, y0) 时,函数 f(x) 都趋近于同一确定的常数 A ,否则该极限就不存在

【总结】:

【例题】:

类型一:


类型二:

类型三:


二、多元微分的计算

关于多元偏导符号:

  • 若 x 仅为自变量,例如 z = f(x, y) ,有 ∂z/∂x = ∂f/∂x ;

  • 若 x 既为自变量、也为中间变量,例如 z = f(x, u, v) 且 u = g(x) ,则 ∂z/∂x ≠ ∂f/∂x 。

1. 复合函数抽象函数求偏导

复合函数求导

1)求具体函数的偏导数和全微分

具体的复合函数求偏导:对一个自变量求偏导,将其余自变量均看作常数,从而可利用一元函数的求导方法求解这类函数的偏导数。

方法 1:用定义(分段函数分段点,用偏导数定义求);
方法 2:先代后求(如果是求二阶导,需要先正常求出一阶导,再去代入)。

【注】:不知道是否存在的题,先考虑利用导数定义,使用先代后求的收益并不大。

  • 用定义:例如求 fx’(a,b) 和 fy’(a,b) ,有:
    fx’(a,b) = limx→a [f(x,b)-f(a,b)] / (x-a) ;
    fy’(a,b) = limy→b [f(a,y)-f(a,b)] / (y-b) 。

  • 先代后求:对 x 求偏导,可以先将 y = b 代入;对 y 求偏导,可以先将 x = a 代入。
    例如:设 z = (y/x)x/y ,求 ∂z/∂x|(1,2) 时,可将 y = 2 代入 z ,使得 z = (2/x)x/2 ,再对 x 求导。

例题:

2)求抽象函数的偏导数和全微分

抽象的复合函数求偏导数:若 z = f(x,y) 时,fx’(x,y) = f1’(x,y) ,fy’(x,y) = f2’(x,y) 。


3)求变上限积分的偏导数和全微分

2. 偏积分、变量替换

1)偏积分

注:对 x 作偏积分,结果中需要加 φ(y) ;对 y 作偏积分,结果中需要加 φ(x) 。

【例题】:若函数 z = f(x,y) 满足 ∂2z/∂y2 = 2 ,且 f(x,1) = x+2 ,又有 fy’(x,1) = x+1 ,则 f(x,y) = ?

【解析】:∂z/∂y = 2·y+φ(x) ,因为 fy’(x,1) = 2+φ(x) = x+1 ⇒ φ(x) = x-1 ;
由 ∂z/∂y = 2·y+x-1 得到 z = y2+(x-1)·y+ψ(x) ,因为 f(x,1) = 1+x-1+ψ(x) = x+2 ⇒ ψ(x) = 2 ;
由上述分析可知 z = f(x,y) = y2+(x-1)·y+2 。

同类题:

  • 若函数 f(x,y) 满足 fxy’’(x,y) = 2·(y+1)·ex ,fx’(x,0) = (x+1)·ex ,又有 f(0,y) = y2+2·y ,则 f(x,y) = ?
    【答案:f(x,y) = ex·(y2+2·y+x)】

  • 已知 ∂2z/∂x∂y = 1 ,且当 x = 0 时,z = siny 、当 y = 0 时,z = sinx ,则 z(x,y) = ?
    【答案:z(x,y) = x·y+sinx+siny】

2)变量代换

变量代换


极坐标变换


【总结】:

对微分方程作变量替换

自变量和因变量都改变的替换(对自变量和因变量都作变量替换)

3. 隐函数求偏导

1)隐函数存在定理

对于方程 F(x,y,z) = 0 ,若 Fx’ ≠ 0 ,则可以确定隐函数 x = x(y,z) ;
对于方程 F(x,y,z) = 0 ,若 Fy’ ≠ 0 ,则可以确定隐函数 y = y(x,z) ;
对于方程 F(x,y,z) = 0 ,若 Fz’ ≠ 0 ,则可以确定隐函数 z = z(x,y) 。

【做题步骤】:

  • 移项、求偏导、将点带入;

  • 谁的偏导不为 0 ,谁可确定隐函数。

【例题】:设方程 ey·z + y2 + z = 3 - x2 ,则该方程在点 (1,-1,0) 的邻域内:可确定隐函数 x = x(y,z) 和 y = y(x,z) 。

【解析】:① 移项:ey·z + y2 + z + x2 - 3 = 0 ;
② 求偏导:Fx’ = 2·x 、 Fy’ = z·ey·z + 2·y 、Fz’ = y·ey·z + 1 ;
③ 代点:将点 (1,-1,0) 代入偏导得到 Fx’(1,-1,0) = 2 、Fy’(1,-1,0) = -2 、Fz’(1,-1,0) = 0 ;
④ Fx’(1,-1,0) ≠ 0 且 Fy’(1,-1,0) ≠ 0 ,可确定隐函数 x = x(y,z) 和 y = y(x,z) 。

2)隐函数求导公式

二元隐函数的一阶偏导数计算:(公式法)

方程组形式的问题

下面举几道例题:




补充两道题:

【总结】:

三、无条件极值

1. 定义

设函数 z = f(x,y) 在点 P(x0,y0) 的某邻域内有定义,若对该去心邻域内任意的点 P(x,y) 均有 f(x,y) < f(x0,y0) ,则 (x0,y0) 为 f(x,y) 的极大值点,f(x0,y0) 为极大值。

总结:极值点可能在 ① 驻点(fx’ = 0 且 fy’ = 0);② 不可导点。

2. 极值的充要条件

1)必要条件

设 z = f(x,y) 在点 (x0,y0) 处取得极值且一阶偏导数存在,则 fx’(x0,y0) = 0 且 fy’(x0,y0) = 0 。

2)充分条件(用于判定)

设 z = f(x,y) 在点 P(x0,y0) 的某邻域内有二阶连续偏导数,又 fx’(x0,y0) = 0 、fy’(x0,y0) = 0 。

记:A = fxx’’(x0,y0) 、B = fxy’’(x0,y0) 、C = fyy’’(x0,y0) 。若:

  • A·C - B2 > 0 ⇒ 是极值(A < 0 为极大值,A > 0 为极小值)
  • A·C - B2 < 0 ⇒ 不是极值
  • A·C - B2 = 0 ⇒ 该法失效,另寻他法

3. 做题步骤

  • 第一步:求偏导,解驻点;

  • 第二步:求出 A、B、C ,利用 A·C - B2 进行判别。

注:在解方程中,要“放心同乘、小心同除”。例如 3x2 - 6x = 0 这个式子不能写成 3x - 6 = 0 ,这样会遗弃 x = 0 这个解。

下面给出一道有关隐函数求极值的示例题:

1)选填做题技巧

看到 “极限值” + “极值” 的搭配,考虑使用保号性。

【例题】:设 z = f(x,y) 在点 (0,0) 处连续,且 limx→0,y→0 f(x,y)/sin(x2+y2) = -1 ,则:f(x,y) 在点 (0,0) 处取极大值。

【解析】:由 limx→0,y→0 f(x,y)/sin(x2+y2) 得到 f(x,y)/sin(x2+y2) < 0 且 f(0,0) = 0 ,从而得到:f(x,y) < 0 = f(0,0) ,则点 (0,0) 为极大值。

下面再给出一道选择题常考的题型:

从上题可以看出:由 ∂f/∂x > 0 可知 f(x,y) 关于 x 单增;由 ∂f/∂y < 0 可知 f(x,y) 关于 y 单减。

2)判别法失效

A·C - B2 = 0 怎么办?判别法失效,用定义法。

  • 选一条路径:已知 f(0,0) = 0 ,令 y = x ,有 f(x,y) = f(x,x) = -2x2 ,得出点 (0,0) 不是极值(在点 (0,0) 附近可正可负)。

  • 选两条路径:已知 f(0,0) = 0 ,令 y = x ,有 f(x,y) = f(x,x) = x2 ;令 y = -x ,有 f(x,y) = f(x,-x) = -x2 ,得出点 (0,0) 不是极值(在点 (0,0) 附近可正可负)。

  • 保号性:已知 f(0,0) = 0 ,limx→0,y→0 f(x,y)/x2 > 0 ⇒ f(x,y) > 0 = f(0,0) ,得出点 (0,0) 为极小值。

下面给出一道判别法失效的例题:(即 A·C - B2 = 0)

4. 总结

利用极值定义和充分条件



四、条件极值与拉格朗日乘数法

1. 求条件极值和拉格朗日乘数法方法

求函数 z = f(x, y) 在条件 φ(x, y) = 0 下的极值

【方法】:

  • 条件极值转换成无条件极值:将条件 φ(x, y) = 0 转变成 y = g(x) 这样的形式代入 f(x, y) 来消去条件;

  • 但是很多情况是不好将条件变成 y = g(x) 这样的形式来消去条件,这个时候就需要利用拉格朗日乘数法。

【拉格朗日乘数法】:

【总结】:

  • ① 构造拉格朗日函数 F(x,y,λ) = f(x,y) + λ·φ(x,y);

  • ② 将 F(x,y,λ) 分别对 x,y,λ 求偏导,构造方程组。

【技巧】:

  • 要求 √u , 3√u(u > 0),就求 u 的最值;

  • 要求 |u| ,就求 u2 的最值(因为 |u| = √(u)2 );

  • 要求 u1·u2·u3(ui > 0),就取对数(因为 ln(u1·u2·u3) = lnu1 + lnu2 + lnu3 )。

2. 拉格朗日乘数法解方程

1)线代二次法

【特征】:目标和约束中出现的变量都是 “ 2 次” ,即 x2 , y2 , x·y , x·z , y·z 等。

【模板】:

  • 第 1 步:式①·(x/2) + 式②·(y/2) = 0 ;

  • 第 2 步:行列式为 0 ,求 λ 。

下面给出一道例题:

2)方程组讨论法

【方法】:通过 ① 式和 ② 式得到 x 与 y 之间的关系,再代入式 ③ 。

下面给出一道例题:

3)参数方程法

五、有界闭区域最值

连续函数在有界闭区域上的最值一般求法:

1. 方法

【理论总结】:

设 z = f(x,y) 在平面有界闭区域 D 上连续,则 f(x,y) 在 D 存在最大值 M 和最小值 m 。因次,能够取得最值的点可能是在 D 内满足 ∂f/∂x = 0 ,∂f/∂y = 0 ;可能是偏导数不存在的点;也可能是 D 的边界点上达到。

【求解步骤】:

  • 求 f(x,y) 在 D 内可能取得极值(驻点和一阶偏导数不存在的点)的函数值。
    ① 求导;② 找可疑点(fx’=0 , fy’=0 和导数不存在的点);③ 验证是否在边界内。

  • 求 f(x,y) 在 D 的边界上的最大、最小值。
    ① 拉格朗日乘数法;
    ② 化为参数方程(圆、椭圆),适用于 x2 , y2 , x+y , 2·x ,没有交叉项 x·y 时;
    ③ 消去变量化为一元(三角形、矩形、圆)

  • 将上面各函数值进行比较。

【题目类型】:边界为三角形、矩形 or 边界为圆、椭圆 。

2. 边界为三角形、矩形

求解方法一般为:① 消去变量化为一元;② 拉格朗日乘数法。

化为一元时,一定要标注 x 的范围!
需要代值的点有:驻点和端点。

3. 边界为圆、椭圆

求解方法一般为:① 消去变量化为一元;② 化为参数方程(无交叉项时);③ 拉格朗日乘数法。

椭圆方程为:x2/a2 + y2/b2 = 1 ,化为参数方程时,为 x = a·cosθ 、y = b·sinθ 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kusunoki_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值