0205函数的微分-导数与微分-高等数学

1 微分的定义

1.1 定义

定义 设函数 y = f ( x ) y=f(x) y=f(x)的某区间内有定义, x 0 及 x 0 + △ x x_0及x_0+\triangle x x0x0+x在该区间内,如果函数的增量

△ y = f ( x 0 + △ x ) − f ( x 0 ) \triangle y=f(x_0+\triangle x)-f(x_0) y=f(x0+x)f(x0)

可表示为:

△ y = A △ x + o ( △ x ) \triangle y=A\triangle x+o(\triangle x) y=Ax+o(x)

其中A是不依赖于 △ x \triangle x x的常数,那么称函数 y = f ( x ) 在点 x 0 y=f(x)在点x_0 y=f(x)在点x0处是可微的,而 A △ x A\triangle x Ax叫做 y = f ( x ) 在点 x 0 y=f(x)在点x_0 y=f(x)在点x0相应于自变量增量 △ x \triangle x x的微分,记做dy,即

d y = A △ x dy=A\triangle x dy=Ax

注:

  1. ∣ △ x ∣ |\triangle x| ∣△x很小时, △ y ≈ d y = A △ x , d y 是 △ y 的线性主部 \triangle y\approx dy=A\triangle x,dy是\triangle y的线性主部 ydy=Ax,dyy的线性主部
  2. 只有当误差 △ y − d y = o ( △ x ) 且 A 与 △ x \triangle y-dy=o(\triangle x)且A与\triangle x ydy=o(x)Ax无关时,称可微

1.2 函数可微的充要条件

定理: f ( x ) 的点 x 0 f(x)的点x_0 f(x)的点x0可微 ⇔ \Leftrightarrow f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0可导,且 f ( x ) 在点 x 0 f(x)在点x_0 f(x)在点x0可微时, d y = f ′ ( x 0 ) △ x dy=f^{'}(x_0)\triangle x dy=f(x0)x

证明: ⇒ f ( x ) 在点 x 0 可微,则 △ y = A △ x + o ( △ x ) ,两边同除以 △ x , 得 △ y △ x = A + o ( △ x ) △ x 当 △ x → 0 时,取极限得 A = lim ⁡ △ x → 0 △ y △ x = f ′ ( x 0 ) 充分性 ⇐ f ( x ) 在点 x 0 可导,则 lim ⁡ △ x → 0 △ y △ x = f ′ ( x 0 ) 根据极限和无穷小的关系有, △ y △ x = f ′ ( x 0 ) + α ( △ x ) , 其中 α 是关于 △ x 的高阶无穷小,即 lim ⁡ △ x → 0 α = 0 两边同乘以 △ x , 得 △ y = f ′ ( x 0 ) △ x + α ( △ x ) △ x 其中 lim ⁡ △ x → 0 α ( △ x ) △ x △ x = 0 , 即它是关于 △ x 的无穷小 所有 f ( x ) 在点 x 0 可微 , 且微分 d y = f ′ ( x 0 ) 与 △ x 无关。 证明:\Rightarrow \\ f(x)在点x_0可微,则\triangle y=A\triangle x+o(\triangle x) ,两边同除以\triangle x,得 \\ \frac{\triangle y}{\triangle x}=A + \frac{o(\triangle x)}{\triangle x} \\ 当\triangle x\to0时,取极限 得 \\ A = \lim\limits_{\triangle x\to0}{\frac{\triangle y}{\triangle x}}=f^{'}(x_0) \\ 充分性\Leftarrow \\ f(x)在点x_0可导,则\lim\limits_{\triangle x\to0}{\frac{\triangle y}{\triangle x}}=f^{'}(x_0) \\ 根据极限和无穷小的关系有,{\frac{\triangle y}{\triangle x}}=f^{'}(x_0)+\alpha(\triangle x),其中\alpha是关于\triangle x的高阶无穷小,即\\ \lim\limits_{\triangle x\to0}{\alpha}=0 \\ 两边同乘以\triangle x,得 \triangle y=f^{'}(x_0)\triangle x+\alpha(\triangle x)\triangle x \\ 其中 \lim\limits_{\triangle x\to0}{\frac{\alpha(\triangle x)\triangle x}{\triangle x}}=0,即它是关于\triangle x的无穷小 \\ 所有f(x)在点x_0可微,且微分dy=f^{'}(x_0)与\triangle x无关。 证明:f(x)在点x0可微,则y=Ax+o(x),两边同除以x,xy=A+xo(x)x0时,取极限得A=x0limxy=f(x0)充分性f(x)在点x0可导,则x0limxy=f(x0)根据极限和无穷小的关系有,xy=f(x0)+α(x),其中α是关于x的高阶无穷小,即x0limα=0两边同乘以x,y=f(x0)x+α(x)x其中x0limxα(x)x=0,即它是关于x的无穷小所有f(x)在点x0可微,且微分dy=f(x0)x无关。

注:

  1. 考虑 y = f ( x ) = x , 则 y ′ = 1 , 故 d x = △ x y=f(x)=x,则y^{'}=1,故dx=\triangle x y=f(x)=x,y=1,dx=x。我们通常自变量的增量 △ x \triangle x x称为自变量的微分,记做dx,即 d x = △ x dx=\triangle x dx=x,于是函数微分 d y = f ′ ( x 0 ) d x dy=f^{'}(x_0)dx dy=f(x0)dx

例1 求函数 y = x 3 当 x 0 = 2 , △ x = 0.02 y=x^3当x_0=2,\triangle x=0.02 y=x3x0=2,x=0.02时的微分
d y = ( x 3 ) ′ d x = 3 x 2 d x , d y ∣ x = 2 = 3 ⋅ 2 2 ⋅ 0.02 = 0.24 dy=(x^3)^{'}dx=3x^2dx,dy|_{x=2}=3\cdot2^2\cdot0.02=0.24 dy=(x3)dx=3x2dx,dyx=2=3220.02=0.24

2 微分的几何意义

在这里插入图片描述

如上图所示, △ y \triangle y y是曲线函数 y = f ( x ) y=f(x) y=f(x)上纵坐标的增量,dy就是曲线切线上点的纵坐标增量。当 △ x \triangle x x很小时, ∣ △ y − d y ∣ |\triangle y-dy| ∣△ydy △ x \triangle x x小的多。因此在点M的邻近,我们可以切线段来近似代替曲线段。

在局部范围内用线性函数近似代替非线性函数,在几何上就是用切线段近似代替曲线段,这在数学上称为非线性函数的局部线性化,这是微分学的基本思想方法之一。

  • x 0 x_0 x0充分小的邻域内,可用 x 0 x_0 x0处切线段近似代替 x 0 x_0 x0处的曲线段。

3 基本初等函数的微分公式与微分运算法则

微分公式: d y = f ′ ( x ) d x dy=f^{'}(x)dx dy=f(x)dx

计算函数的微分,只要计算函数的导数,在乘以自变量的微分即可。

3.1 基本初等函数的微分公式

由基本初等函数的导数公式,可以直接写出基本初等函数的微分公式,可以复习下前面的导数公式。

3.2 函数和、差、积、商的微分法则

由函数和、差、积、商的求导法则,可推得相应的微分法则

求导法则微分法则
( u ± v ) ′ = u ′ ± v ′ (u\pm v)^{'}=u^{'}\pm v^{'} (u±v)=u±v d ( u ± v ) = d u ± d v d(u\pm v)=du\pm dv d(u±v)=du±dv
( C u ) ′ = C u ′ (Cu)^{'}=Cu^{'} (Cu)=Cu d ( C u ) = C d u d(Cu)=Cdu d(Cu)=Cdu
( u v ) ′ = u ′ v + u v ′ (uv)^{'}=u^{'}v+uv^{'} (uv)=uv+uv d ( u v ) = v d u + u d v d(uv)=vdu+udv d(uv)=vdu+udv
( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v})^{'}=\frac{u^{'}v-uv^{'}}{v^2}(v\not=0) (vu)=v2uvuv(v=0) d ( u v ) = v d u − u d v v 2 ( v ≠ 0 ) d(\frac{u}{v})=\frac{vdu-udv}{v^2}(v\not=0) d(vu)=v2vduudv(v=0)

3.3 复合函数的微分法则

与符合函数的求导法则相应的符合函数的微分法则可推导如下:

d y = y x ′ d x = f ′ ( u ) g ′ ( x ) d x 或者 d y = f ′ ( u ) d u dy=y^{'}_xdx=f^{'}(u)g^{'}(x)dx或者dy=f^{'}(u)du dy=yxdx=f(u)g(x)dx或者dy=f(u)du

无论 u u u是自变量还是中间变量,微分形式 d y = f ′ ( u ) d u dy=f^{'}(u)du dy=f(u)du保持不变。这一性质称为微分形式不变性。

例2 y = sin ⁡ ( 2 x + 1 ) , 求 d y y=\sin(2x+1),求dy y=sin(2x+1),dy
解: d y = 2 cos ⁡ ( 2 x + 1 ) d x 解:dy=2\cos(2x+1)dx 解:dy=2cos(2x+1)dx
例3 y = ln ⁡ ( 1 + e x 2 ) , 求 d y y=\ln(1+e^{x^2}),求dy y=ln(1+ex2),dy
解: d y = 1 1 + e x 2 ⋅ e x 2 ⋅ 2 x d x = 2 x e x 2 1 + e x 2 解:dy=\frac{1}{1+e^{x^2}}\cdot e^{x^2}\cdot2xdx=\frac{2xe^{x^2}}{1+e^{x^2}} 解:dy=1+ex21ex22xdx=1+ex22xex2
例4: y = e 1 − 3 x cos ⁡ x , 求 d y y=e^{1-3x}\cos x,求dy y=e13xcosx,dy
解: d y = cos ⁡ x d ( e 1 − 3 x ) + e 1 − 3 x d ( cos ⁡ x ) = cos ⁡ x e 1 − 3 x ⋅ ( − 3 d x ) − e 1 − 3 x sin ⁡ x = − e 1 − 3 x ( 3 cos ⁡ x + sin ⁡ x ) d x 解:dy=\cos xd(e^{1-3x})+e^{1-3x}d(\cos x)=\cos xe^{1-3x}\cdot(-3dx)-e^{1-3x}\sin x \\ =-e^{1-3x}(3\cos x+\sin x)dx 解:dy=cosxd(e13x)+e13xd(cosx)=cosxe13x(3dx)e13xsinx=e13x(3cosx+sinx)dx

4 微分在近似计算中的应用

4.1 函数的近似计算

4.1.1 近似公式推导

f ( x ) 在 x 0 f(x)在x_0 f(x)x0处可导(可微),且 f ′ ( x 0 ) ≠ 0 f^{'}(x_0)\not=0 f(x0)=0,则由微分定义

△ y = f ′ ( x 0 ) △ x + o ( △ x ) \triangle y=f^{'}(x_0)\triangle x+o(\triangle x) y=f(x0)x+o(x)

∣ △ x ∣ |\triangle x| ∣△x很小时, △ y ≈ f ′ ( x 0 ) △ x \triangle y\approx f^{'}(x_0)\triangle x yf(x0)x

f ( x 0 + △ x ) − f ( x 0 ) ≈ f ′ ( x 0 ) △ x 或者 f ( x 0 + △ x ) ≈ f ( x 0 ) + f ′ ( x 0 ) △ x f(x_0+\triangle x)-f(x_0)\approx f^{'}(x_0)\triangle x或者f(x_0+\triangle x)\approx f(x_0)+f^{'}(x_0)\triangle x f(x0+x)f(x0)f(x0)x或者f(x0+x)f(x0)+f(x0)x

x = x 0 + △ x , 带入上式,得 x=x_0+\triangle x,带入上式,得 x=x0+x,带入上式,得

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f^{'}(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)

例7. 有一批半径为1cm的球,为了提高球面的光洁度,要镀上一层铜,厚度定位0.01cm,估计每只球用铜多少克?(注:同的密度是 8.9 g / c m 3 8.9g/cm^3 8.9g/cm3)
解:先求镀层的体积,乘以密度得到用铜的质量。 镀层的体积为两个球体体积之差, 它就是球体体积 V = 4 3 π R 3 当 R 有 R 0 取得增量 △ R 时的增量 △ V ≈ f ′ ( R ) △ R = 4 π R 2 △ R R = 1 c m , △ R = 0.01 c m , 则 △ V ≈ 0.04 π c m 3 ≈ 0.13 c m 3 用铜约为 0.13 × 8.9 ≈ 1.16 ( g ) 解:先求镀层的体积,乘以密度得到用铜的质量。 \\ 镀层的体积为两个球体体积之差, \\ 它就是球体体积V=\frac{4}{3}\pi R^3当R有R_0取得增量\triangle R时的增量 \\ \triangle V\approx f^{'}(R)\triangle R=4\pi R^2\triangle R \\ R=1cm,\triangle R=0.01cm,则 \\ \triangle V\approx 0.04\pi cm^3\approx0.13cm^3 \\ 用铜约为 0.13\times8.9\approx1.16(g) 解:先求镀层的体积,乘以密度得到用铜的质量。镀层的体积为两个球体体积之差,它就是球体体积V=34πR3RR0取得增量R时的增量Vf(R)R=4πR2RR=1cm,R=0.01cm,V0.04πcm30.13cm3用铜约为0.13×8.91.16(g)

4.1.2 常用近似公式

f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\approx f(x_0)+f^{'}(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)

x 0 = 0 x_0=0 x0=0,得 f ( x ) ≈ f ( 0 ) + f ′ ( 0 ) x , ∣ x ∣ 很小 f(x)\approx f(0)+f^{'}(0)x,|x|很小 f(x)f(0)+f(0)xx很小

(1) ( 1 + x ) α ≈ 1 + α x (1+x)^\alpha\approx1+\alpha x (1+x)α1+αx

(2) sin ⁡ x ≈ x \sin x\approx x sinxx

(3) tan ⁡ x ≈ x \tan x\approx x tanxx

(4) e x ≈ 1 + x e^x\approx 1+x ex1+x

(5) ln ⁡ ( 1 + x ) ≈ x \ln(1+x)\approx x ln(1+x)x

例8. 计算 1.05 \sqrt{1.05} 1.05 的近似值
解: 1.05 ≈ 1 + 1 2 × 0.05 = 1.025 解:\sqrt{1.05}\approx 1+\frac{1}{2}\times0.05=1.025 解:1.05 1+21×0.05=1.025

4.2 误差估计

(1)间接测试误差:根据有误差的测试数据带入公式计算而得误差

(2)绝对误差:精确值为A,测试值为a,称|A-a|为绝对误差

(3)相对误差: ∣ A − a ∣ ∣ a ∣ \frac{|A-a|}{|a|} aAa

(4)绝对误差限:若 ∣ A − a ∣ ≤ δ A |A-a|\le \delta_A AaδA,称 δ A \delta_A δA为A的绝对误差限

(5)相对误差限: δ A ∣ a ∣ \frac{\delta_A}{|a|} aδA

根据直接测量的x值,按公式 y = f ( x ) y=f(x) y=f(x)计算y时,若已知测试x的绝对误差限 δ x \delta_x δx,即 ∣ △ x ∣ ≤ δ x |\triangle x|\le \delta_x ∣△xδx,

则y的绝对误差限 δ y = ? \delta_y=? δy=?

y的相对误差限 δ y ∣ y ∣ = ? \frac{\delta_y}{|y|}=? yδy=?

解:利用微分近似计算公式 : △ y ≈ d y = y ′ △ x δ y = ∣ △ y ∣ ≈ ∣ y ′ △ x ∣ = ∣ y ′ ∣ δ x δ y ∣ y ∣ = ∣ y ′ y ∣ δ x 解:利用微分近似计算公式:\triangle y \approx dy=y^{'}\triangle x \\ \delta_y=|\triangle y|\approx |y^{'}\triangle x|=|y^{'}|\delta_x \\ \frac{\delta_y}{|y|}=|\frac{y^{'}}{y}|\delta_x 解:利用微分近似计算公式:ydy=yxδy=∣△yyx=yδxyδy=yyδx

例9 测得圆钢的直径D=60.03mm,测量D的绝对误差限 δ D = 0.05 m m \delta_D=0.05mm δD=0.05mm,利用公式 A = π 4 D 2 A=\frac{\pi}{4}D^2 A=4πD2计算圆钢的截面积时,试估计面积的误差。
面积绝对误差限 δ A = y ′ δ D = π 2 D ⋅ δ D = π 2 × 60.03 × 0.05 ≈ 4.712 ( m m 2 ) 面积的相对误差限 δ A ∣ A ∣ = ∣ y ′ y ∣ δ D = 2 δ D D = 2 × 0.05 60.03 ≈ 0.17 % 面积绝对误差限\delta_A=y^{'}\delta_D=\frac{\pi}{2}D\cdot\delta_D \\ =\frac{\pi}{2}\times60.03\times0.05\approx4.712(mm^2) \\ 面积的相对误差限\frac{\delta_A}{|A|}=|\frac{y^{'}}{y}|\delta_D=2\frac{\delta_D}{D} \\ =2\times\frac{0.05}{60.03}\approx0.17\% 面积绝对误差限δA=yδD=2πDδD=2π×60.03×0.054.712(mm2)面积的相对误差限AδA=yyδD=2DδD=2×60.030.050.17%

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值